Xét hình trụ có bán kính đáy R, có trục là trục hoành Ox, nằm giữa hai mặt phẳng x = a và x = b (a < b) (H.4.20).
a) Tính thể tích V của hình trụ.
b) Tính diện tích mặt cắt S(x) khi cắt hình trụ bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ là x (a ≤ x ≤ b). Từ đó tính và so sánh với V.
Xét hình trụ có bán kính đáy R, có trục là trục hoành Ox, nằm giữa hai mặt phẳng x = a và x = b (a < b) (H.4.20).
a) Tính thể tích V của hình trụ.
b) Tính diện tích mặt cắt S(x) khi cắt hình trụ bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ là x (a ≤ x ≤ b). Từ đó tính và so sánh với V.

Quảng cáo
Trả lời:

a) Độ dài chiều cao hình trụ là: h = b – a.
Thể tích của hình trụ là: V = πR2h = πR2(b – a).
b) Diện tích mặt cắt S(x) khi cắt hình trụ bởi mặt phẳng vuông góc với trục Ox là
S(x) = πR2.
Ta có \(\int\limits_a^b {S\left( x \right)} dx\)\[ = \int\limits_a^b {\pi {R^2}} dx\]\[ = \left. {\left( {\pi {R^2}x} \right)} \right|_a^b\]\[ = \pi {R^2}\left( {b - a} \right)\].
Vậy \(V = \int\limits_a^b {S\left( x \right)} dx\).
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Xét tam giác OAB vuông tại A, có AB = OA.tanα = a.tanα.
Khi quay miền tam giác OAB xung quanh trục Ox ta được khối nón có bán kính đáy r = AB = a.tanα và chiều cao h = OA = a.
Do đó \(V = \frac{1}{3}\pi {r^2}h = \frac{1}{3}\pi {a^3}{\tan ^2}\alpha \).
b) Có \(V' = \frac{1}{3}\pi {a^3}.2\tan \alpha .\frac{1}{{{{\cos }^2}\alpha }}\).
Vì \(0 < \alpha \le \frac{\pi }{4}\) Þ 0 < tanα ≤ 1 nên V' > 0. Do đó V là hàm số đồng biến trên \(\left( {0;\frac{\pi }{4}} \right)\).
Do đó \(\mathop {\max }\limits_{\left( {0;\frac{\pi }{4}} \right]} V = V\left( {\frac{\pi }{4}} \right) = \frac{1}{3}\pi {a^3}\).
Vậy \(\alpha = \frac{\pi }{4}\) thì thể tích khối nón là lớn nhất.
Lời giải
Sự bất bình đẳng thu nhập của Hoa Kỳ vào năm 2005 là:
\(S = \int\limits_0^{100} {\left| {{{\left( {0,00061{x^2} + 0,0218x + 1723} \right)}^2} - x} \right|dx} \)
\( = \int\limits_0^{100} {\left| {\left( {{{0,00061}^2}{x^4} + {{4,7524.10}^{ - 4}}{x^2} + {{1723}^2} + {{2,6596.10}^{ - 5}}{x^3} + 2,10206{x^2} + 75,1228x} \right) - x} \right|dx} \)
\( = \int\limits_0^{100} {\left| {\left( {{{0,00061}^2}{x^4} + {{2,6596.10}^{ - 5}}{x^3} + 2,10253524{x^2} + 74,1228x + {{1723}^2}} \right)} \right|dx} \)
\( = \int\limits_0^{100} {\left( {{{0,00061}^2}{x^4} + {{2,6596.10}^{ - 5}}{x^3} + 2,10253524{x^2} + 74,1228x + {{1723}^2}} \right)dx} \)
\[ = \left. {\left( {{{7,442.10}^{ - 8}}.{x^5} + {{6,649.10}^{ - 6}}.{x^4} + 0,70084508.{x^3} + 37,0614.{x^2} + {{1723}^2}.x} \right)} \right|_0^{100}\]
\[ = {7,442.10^{ - 8}}{.100^5} + {6,649.10^{ - 6}}{.100^4} + {0,70084508.100^3} + {37,0614.100^2} + {1723^2}.100\]
= 297945768,2.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.