Câu hỏi:

12/07/2024 1,280

Gọi S là diện tích hình phẳng giới hạn bởi đồ thị của các hàm số f(x) = −x2 + 4x, g(x) = x và hai đường thẳng x = 1, x = 3 (H.4.16).

a) Giả sử S1 là diện tích hình phẳng giới hạn bởi parabol y = −x2 + 4x, trục hoành và hai đường thẳng x = 1, x = 3; S2 là diện tích hình phẳng giới hạn bởi đường thẳng y = x, trục hoành và hai đường thẳng x = 1, x = 3. Tính S1, S2 và từ đó suy ra S.

b) Tính 13fxgxdxvà so sánh với S.

Gọi S là diện tích hình phẳng giới hạn bởi đồ thị của các hàm số f(x) = −x^2 + 4x, g(x) = x và hai đường thẳng x = 1, x = 3 (H.4.16). a) Giả sử S1 là diện tích hình phẳng giới hạn bởi parabol y = −x2 + 4x, trục hoành và hai đường thẳng x = 1, x = 3; S2 là diện tích hình phẳng giới hạn bởi đường thẳng y = x, trục hoành và hai đường thẳng x = 1, x = 3. Tính S1, S2 và từ đó suy ra S. b) Tính  và so sánh với S.   (ảnh 1)

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Sách đề toán-lý-hóa Sách văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Ta có \({S_1} = \int\limits_1^3 {\left| { - {x^2} + 4x} \right|dx} \)\( = \int\limits_1^3 {\left( { - {x^2} + 4x} \right)dx} \)\( = \left. {\left( { - \frac{{{x^3}}}{3} + 2{x^2}} \right)} \right|_1^3\)\( = 9 - \frac{5}{3} = \frac{{22}}{3}\).

\({S_2} = \int\limits_1^3 {\left| x \right|} dx\)\( = \int\limits_1^3 x dx\)\( = \left. {\frac{{{x^2}}}{2}} \right|_1^3 = \frac{9}{2} - \frac{1}{2} = 4\).

Do đó S = S1 – S2 = \(\frac{{22}}{3} - 4 = \frac{{10}}{3}\).

b) \(\int\limits_1^3 {\left| {f\left( x \right) - g\left( x \right)} \right|} dx\)\( = \int\limits_1^3 {\left| { - {x^2} + 4x - x} \right|} dx\)\( = \int\limits_1^3 {\left| { - {x^2} + 3x} \right|} dx\)\( = \int\limits_1^3 {\left( { - {x^2} + 3x} \right)} dx\)

\( = \left. {\left( { - \frac{{{x^3}}}{3} + 3.\frac{{{x^2}}}{2}} \right)} \right|_1^3\)\( = \frac{9}{2} - \frac{7}{6} = \frac{{10}}{3}\).

Vậy \(S = \int\limits_1^3 {\left| {f\left( x \right) - g\left( x \right)} \right|} dx\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác vuông OAB có cạnh OA = a nằm trên trục Ox và AOB^=α0<απ4. Gọi β là khối tròn xoay sinh ra khi quay miền tam giác OAB xung quanh trục Ox (H.4.31).

a) Tính thể tích V của β theo a và α.

b) Tìm α sao cho thể tích V lớn nhất.

Cho tam giác vuông OAB có cạnh OA = a nằm trên trục Ox và (ảnh 1)

Xem đáp án » 13/07/2024 10,342

Câu 2:

Các nhà kinh tế sử dụng đường cong Lorenz để minh họa sự phân phối thu nhập trong một quốc gia. Gọi x là đại diện cho phần trăm số gia đình trong một quốc gia và y là phần trăm tổng thu nhập, mô hình y = x sẽ đại diện cho một quốc gia mà các gia đình có thu nhập như nhau. Đường cong Lorenz y = f(x), biểu thị phân phối thu nhập thực tế. Diện tích giữa hai mô hình này, với 0 ≤ x ≤ 100, biểu thị “sự bất bình đẳng về thu nhập” của một quốc gia. Năm 2005, đường con Lorenz của Hoa Kỳ có thể được mô hình hóa bởi hàm số

y = (0,00061x2 + 0,0218x + 1723)2, 0 ≤ x ≤ 100,

trong đó x được tính từ các gia đình nghèo nhất đến giàu có nhất (Theo R.Larson, Brief Calculus: An Applied Approach, 8th edition, Cengage Learning, 2009).

Tìm sự bất bình đẳng thu nhập của Hoa Kỳ vào năm 2005.

Xem đáp án » 13/07/2024 9,107

Câu 3:

Khối chỏm cầu có bán kính R và chiều cao h (0 < h ≤ R) sinh ra khi quay hình phẳng giới hạn bởi cung tròn có phương trình y=R2x2, trục hoành và hai đường thẳng x = R – h, x = R xung quanh trục Ox (H.4.30). Tính thể tích của khối chỏm cầu này.

Khối chỏm cầu có bán kính R và chiều cao h (0 < h ≤ R) sinh ra khi quay hình phẳng giới hạn bởi cung tròn có phương trình (ảnh 1)

Xem đáp án » 13/07/2024 7,828

Câu 4:

Tính diện tích của hình phẳng giới hạn bởi các đường:

a) y = ex, y = x2 – 1, x = −1, x = 1;

b) y = sinx, y = x, \(x = \frac{\pi }{2},x = \pi \);

c) y = 9 – x2, y = 2x2, \(x = - \sqrt 3 ,x = \sqrt 3 \);

d) \(y = \sqrt x ,\)y = x2, x = 0, x = 1.

Xem đáp án » 13/07/2024 3,767

Câu 5:

Tính thể tích của khối tròn xoay sinh ra khi quay hình phẳng giới hạn bởi các đường sau xung quanh trục Ox: y = 2x – x2, y = 0, x = 0, x = 2.

Xem đáp án » 12/07/2024 3,433

Câu 6:

Ta biết rằng hàm cầu liên quan đến giá p của một sản phẩm với nhu cầu của người tiêu dùng, hàm cung liên quan đến giá p của sản phẩm với mức độ sẵn sàng cung cấp sản phẩm của nhà sản xuất. Điểm cắt nhau (x0; p0) của đồ thị hàm cầu p = D(x) và đồ thị hàm cung p = S(x) được gọi là điểm cân bằng.

Các nhà kinh tế gọi diện tích của hình giới hạn bởi đồ thị hàm cầu, đường ngang p = p0 và đường thẳng đứng x = 0 là thặng dư tiêu dùng. Tương tự, diện tích của hình giới hạn bởi đồ thị của hàm cung, đường nằm ngang p = p0 và đường thẳng đứng x = 0 được gọi là thặng dư sản xuất, như trong Hình 4.19.

(Theo R.Larson, Brief Calculus: An Applied Approach, 8th edition, Cengage Learning, 2009).

Giả sử hàm cung và hàm cầu của một loại sản phẩm được mô hình hóa bởi:

Hàm cầu: p = −0,36x + 9 và hàm cung: p = 0,14x + 2, trong đó x là số đơn vị sản phẩm. Tìm thặng dư tiêu dùng và thặng dư sản xuất cho sản phẩm này.

Ta biết rằng hàm cầu liên quan đến giá p của một sản phẩm với nhu cầu của người tiêu dùng, hàm cung (ảnh 1)

Xem đáp án » 13/07/2024 3,384

Câu 7:

Tính diện tích của hình phẳng được tô màu trong Hình 4.29.

Tính diện tích của hình phẳng được tô màu trong Hình 4.29.   (ảnh 1)

Xem đáp án » 13/07/2024 2,310

Bình luận


Bình luận