Câu hỏi:
12/07/2024 890Gọi S là diện tích hình phẳng giới hạn bởi đồ thị của các hàm số f(x) = −x2 + 4x, g(x) = x và hai đường thẳng x = 1, x = 3 (H.4.16).
a) Giả sử S1 là diện tích hình phẳng giới hạn bởi parabol y = −x2 + 4x, trục hoành và hai đường thẳng x = 1, x = 3; S2 là diện tích hình phẳng giới hạn bởi đường thẳng y = x, trục hoành và hai đường thẳng x = 1, x = 3. Tính S1, S2 và từ đó suy ra S.
b) Tính và so sánh với S.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
a) Ta có \({S_1} = \int\limits_1^3 {\left| { - {x^2} + 4x} \right|dx} \)\( = \int\limits_1^3 {\left( { - {x^2} + 4x} \right)dx} \)\( = \left. {\left( { - \frac{{{x^3}}}{3} + 2{x^2}} \right)} \right|_1^3\)\( = 9 - \frac{5}{3} = \frac{{22}}{3}\).
\({S_2} = \int\limits_1^3 {\left| x \right|} dx\)\( = \int\limits_1^3 x dx\)\( = \left. {\frac{{{x^2}}}{2}} \right|_1^3 = \frac{9}{2} - \frac{1}{2} = 4\).
Do đó S = S1 – S2 = \(\frac{{22}}{3} - 4 = \frac{{10}}{3}\).
b) \(\int\limits_1^3 {\left| {f\left( x \right) - g\left( x \right)} \right|} dx\)\( = \int\limits_1^3 {\left| { - {x^2} + 4x - x} \right|} dx\)\( = \int\limits_1^3 {\left| { - {x^2} + 3x} \right|} dx\)\( = \int\limits_1^3 {\left( { - {x^2} + 3x} \right)} dx\)
\( = \left. {\left( { - \frac{{{x^3}}}{3} + 3.\frac{{{x^2}}}{2}} \right)} \right|_1^3\)\( = \frac{9}{2} - \frac{7}{6} = \frac{{10}}{3}\).
Vậy \(S = \int\limits_1^3 {\left| {f\left( x \right) - g\left( x \right)} \right|} dx\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác vuông OAB có cạnh OA = a nằm trên trục Ox và . Gọi β là khối tròn xoay sinh ra khi quay miền tam giác OAB xung quanh trục Ox (H.4.31).
a) Tính thể tích V của β theo a và α.
b) Tìm α sao cho thể tích V lớn nhất.
Câu 2:
Các nhà kinh tế sử dụng đường cong Lorenz để minh họa sự phân phối thu nhập trong một quốc gia. Gọi x là đại diện cho phần trăm số gia đình trong một quốc gia và y là phần trăm tổng thu nhập, mô hình y = x sẽ đại diện cho một quốc gia mà các gia đình có thu nhập như nhau. Đường cong Lorenz y = f(x), biểu thị phân phối thu nhập thực tế. Diện tích giữa hai mô hình này, với 0 ≤ x ≤ 100, biểu thị “sự bất bình đẳng về thu nhập” của một quốc gia. Năm 2005, đường con Lorenz của Hoa Kỳ có thể được mô hình hóa bởi hàm số
y = (0,00061x2 + 0,0218x + 1723)2, 0 ≤ x ≤ 100,
trong đó x được tính từ các gia đình nghèo nhất đến giàu có nhất (Theo R.Larson, Brief Calculus: An Applied Approach, 8th edition, Cengage Learning, 2009).
Tìm sự bất bình đẳng thu nhập của Hoa Kỳ vào năm 2005.
Câu 3:
Khối chỏm cầu có bán kính R và chiều cao h (0 < h ≤ R) sinh ra khi quay hình phẳng giới hạn bởi cung tròn có phương trình , trục hoành và hai đường thẳng x = R – h, x = R xung quanh trục Ox (H.4.30). Tính thể tích của khối chỏm cầu này.
Câu 4:
Ta biết rằng hàm cầu liên quan đến giá p của một sản phẩm với nhu cầu của người tiêu dùng, hàm cung liên quan đến giá p của sản phẩm với mức độ sẵn sàng cung cấp sản phẩm của nhà sản xuất. Điểm cắt nhau (x0; p0) của đồ thị hàm cầu p = D(x) và đồ thị hàm cung p = S(x) được gọi là điểm cân bằng.
Các nhà kinh tế gọi diện tích của hình giới hạn bởi đồ thị hàm cầu, đường ngang p = p0 và đường thẳng đứng x = 0 là thặng dư tiêu dùng. Tương tự, diện tích của hình giới hạn bởi đồ thị của hàm cung, đường nằm ngang p = p0 và đường thẳng đứng x = 0 được gọi là thặng dư sản xuất, như trong Hình 4.19.
(Theo R.Larson, Brief Calculus: An Applied Approach, 8th edition, Cengage Learning, 2009).
Giả sử hàm cung và hàm cầu của một loại sản phẩm được mô hình hóa bởi:
Hàm cầu: p = −0,36x + 9 và hàm cung: p = 0,14x + 2, trong đó x là số đơn vị sản phẩm. Tìm thặng dư tiêu dùng và thặng dư sản xuất cho sản phẩm này.
Câu 5:
Tính thể tích của khối tròn xoay sinh ra khi quay hình phẳng giới hạn bởi các đường sau xung quanh trục Ox: y = 2x – x2, y = 0, x = 0, x = 2.
Câu 6:
Tính diện tích của hình phẳng giới hạn bởi các đường:
a) y = ex, y = x2 – 1, x = −1, x = 1;
b) y = sinx, y = x, \(x = \frac{\pi }{2},x = \pi \);
c) y = 9 – x2, y = 2x2, \(x = - \sqrt 3 ,x = \sqrt 3 \);
d) \(y = \sqrt x ,\)y = x2, x = 0, x = 1.
53 câu Bài tập về Tính đơn điệu của hàm số có lời giải (P1)
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
200 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát hàm số nâng cao (P1)
56 câu Chuyên đề Toán 12 Bài 2: Lôgarit có đáp án
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)
về câu hỏi!