Câu hỏi:

13/07/2024 650 Lưu

Xét hình phẳng giới hạn bởi đồ thị hàm số fx=12x, trục hoành và hai đường thẳng x = 0, x = 4. Khi quay hình phẳng này xung quanh trục hoành Ox ta được khối nón có đỉnh là gốc O, trục là Ox và đáy là hình tròn bán kính bằng 2 (H.4.25).

a) Tính thể tích V của khối nón.

b) Chứng minh rằng khi cắt khối nón bởi mặt phẳng vuông góc với trục hoành tại điểm có hoành độ bằng x (0 ≤ x ≤ 4) thì mặt cắt thu được là một hình tròn có bán kính là f(x), do đó diện tích mặt cắt là S(x) = πf2(x). Tính π04f2xdx và so sánh với V.

Xét hình phẳng giới hạn bởi đồ thị hàm số f(x)= 1/2 x , trục hoành và hai đường thẳng x = 0, x = 4. Khi quay hình phẳng (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Ta có chiều cao của khối nón là h = 4, bán kính đáy của khối nón là R = 2.

Do đó thể tích của khối nón là\(V = \frac{1}{3}\pi {R^2}h = \frac{1}{3}\pi {.2^2}.4 = \frac{{16\pi }}{3}\).

b)

Xét hình phẳng giới hạn bởi đồ thị hàm số f(x)= 1/2 x , trục hoành và hai đường thẳng x = 0, x = 4. Khi quay hình phẳng (ảnh 2)

Khi cắt khối nón bởi mặt phẳng vuông góc với trục hoành tại điểm có hoành độ bằng x (0 ≤ x ≤ 4) thì mặt cắt thu được là một hình tròn có bán kính là \(f\left( x \right) = \frac{1}{2}x\).

Khi đó diện tích mặt cắt là \(S\left( x \right) = \pi {f^2}\left( x \right) = \frac{\pi }{4}{x^2}\).

Ta có \(\pi \int\limits_0^4 {{f^2}\left( x \right)} dx\)\( = \pi \int\limits_0^4 {\frac{{{x^2}}}{4}} dx\)\( = \frac{\pi }{4}\int\limits_0^4 {{x^2}} dx\)\( = \left. {\left( {\frac{\pi }{4}.\frac{{{x^3}}}{3}} \right)} \right|_0^4 = \frac{{16\pi }}{3}\).

Vậy \(V = \pi \int\limits_0^4 {{f^2}\left( x \right)} dx\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Xét tam giác OAB vuông tại A, có AB = OA.tanα = a.tanα.

Khi quay miền tam giác OAB xung quanh trục Ox ta được khối nón có bán kính đáy r = AB = a.tanα và chiều cao h = OA = a.

Do đó \(V = \frac{1}{3}\pi {r^2}h = \frac{1}{3}\pi {a^3}{\tan ^2}\alpha \).

b) Có \(V' = \frac{1}{3}\pi {a^3}.2\tan \alpha .\frac{1}{{{{\cos }^2}\alpha }}\).

\(0 < \alpha \le \frac{\pi }{4}\) Þ 0 < tanα ≤ 1 nên V' > 0. Do đó V là hàm số đồng biến trên \(\left( {0;\frac{\pi }{4}} \right)\).

Do đó \(\mathop {\max }\limits_{\left( {0;\frac{\pi }{4}} \right]} V = V\left( {\frac{\pi }{4}} \right) = \frac{1}{3}\pi {a^3}\).

Vậy \(\alpha = \frac{\pi }{4}\) thì thể tích khối nón là lớn nhất.

Lời giải

Sự bất bình đẳng thu nhập của Hoa Kỳ vào năm 2005 là:

\(S = \int\limits_0^{100} {\left| {{{\left( {0,00061{x^2} + 0,0218x + 1723} \right)}^2} - x} \right|dx} \)

\( = \int\limits_0^{100} {\left| {\left( {{{0,00061}^2}{x^4} + {{4,7524.10}^{ - 4}}{x^2} + {{1723}^2} + {{2,6596.10}^{ - 5}}{x^3} + 2,10206{x^2} + 75,1228x} \right) - x} \right|dx} \)

\( = \int\limits_0^{100} {\left| {\left( {{{0,00061}^2}{x^4} + {{2,6596.10}^{ - 5}}{x^3} + 2,10253524{x^2} + 74,1228x + {{1723}^2}} \right)} \right|dx} \)

\( = \int\limits_0^{100} {\left( {{{0,00061}^2}{x^4} + {{2,6596.10}^{ - 5}}{x^3} + 2,10253524{x^2} + 74,1228x + {{1723}^2}} \right)dx} \)

\[ = \left. {\left( {{{7,442.10}^{ - 8}}.{x^5} + {{6,649.10}^{ - 6}}.{x^4} + 0,70084508.{x^3} + 37,0614.{x^2} + {{1723}^2}.x} \right)} \right|_0^{100}\]

\[ = {7,442.10^{ - 8}}{.100^5} + {6,649.10^{ - 6}}{.100^4} + {0,70084508.100^3} + {37,0614.100^2} + {1723^2}.100\]

= 297945768,2.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP