Câu hỏi:
12/07/2024 405a) Tính thể tích của khối tròn xoay sinh ra khi quay hình thang vuông OABC trong mặt phẳng Oxy với OA = h, AB = R và OC = r, quanh trục Ox (H.4.28).
b) Từ công thức thu được ở phần a, hãy rút ra công thức tính thể tích của khối nón có bán kính đáy bằng R và chiều cao h.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
a) Chọn hệ trục như hình vẽ.
Khi đó ta có C(0; r), B(h; R). Suy ra \(\overrightarrow {BC} = \left( {h;R - r} \right)\).
Phương trình đường thẳng BC qua C và nhận \(\overrightarrow n = \left( {r - R;h} \right)\) có dạng:
(r – R)x + h(y − r) = 0 hay \[y = \frac{{hr + \left( {R - r} \right)x}}{h}\].
Thể tích cần tính là:
\(V = \pi {\int\limits_0^h {\left[ {\frac{{hr + \left( {R - r} \right)x}}{h}} \right]} ^2}dx\)\( = \pi \int\limits_0^h {\left[ {{r^2} + 2r.\frac{{R - r}}{h}x + {{\left( {\frac{{R - r}}{h}x} \right)}^2}} \right]} dx\)
\( = \pi \left. {\left( {{r^2}x + r.\frac{{R - r}}{h}.{x^2} + {{\left( {\frac{{R - r}}{h}} \right)}^2}.\frac{{{x^3}}}{3}} \right)} \right|_0^h\)\( = \pi \left[ {{r^2}h + \left( {Rr - {r^2}} \right).h + \frac{{{{\left( {R - r} \right)}^2}.h}}{3}} \right]\)
\( = \pi \left( {{r^2}h + Rrh - {r^2}h + \frac{1}{3}{R^2}h - \frac{2}{3}Rrh + \frac{1}{3}{r^2}h} \right)\)\( = \pi \left( {\frac{1}{3}{R^2}h + \frac{1}{3}Rrh + \frac{1}{3}{r^2}h} \right)\)
\[ = \frac{1}{3}\pi h\left( {{R^2} + Rr + {r^2}} \right)\].
b) Khi r = 0 thì khối nón cụt trở thành khối nón có chiều cao h, bán kính đáy là R.
Do đó \(V = \frac{1}{3}\pi {R^2}h\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác vuông OAB có cạnh OA = a nằm trên trục Ox và . Gọi β là khối tròn xoay sinh ra khi quay miền tam giác OAB xung quanh trục Ox (H.4.31).
a) Tính thể tích V của β theo a và α.
b) Tìm α sao cho thể tích V lớn nhất.
Câu 2:
Các nhà kinh tế sử dụng đường cong Lorenz để minh họa sự phân phối thu nhập trong một quốc gia. Gọi x là đại diện cho phần trăm số gia đình trong một quốc gia và y là phần trăm tổng thu nhập, mô hình y = x sẽ đại diện cho một quốc gia mà các gia đình có thu nhập như nhau. Đường cong Lorenz y = f(x), biểu thị phân phối thu nhập thực tế. Diện tích giữa hai mô hình này, với 0 ≤ x ≤ 100, biểu thị “sự bất bình đẳng về thu nhập” của một quốc gia. Năm 2005, đường con Lorenz của Hoa Kỳ có thể được mô hình hóa bởi hàm số
y = (0,00061x2 + 0,0218x + 1723)2, 0 ≤ x ≤ 100,
trong đó x được tính từ các gia đình nghèo nhất đến giàu có nhất (Theo R.Larson, Brief Calculus: An Applied Approach, 8th edition, Cengage Learning, 2009).
Tìm sự bất bình đẳng thu nhập của Hoa Kỳ vào năm 2005.
Câu 3:
Khối chỏm cầu có bán kính R và chiều cao h (0 < h ≤ R) sinh ra khi quay hình phẳng giới hạn bởi cung tròn có phương trình , trục hoành và hai đường thẳng x = R – h, x = R xung quanh trục Ox (H.4.30). Tính thể tích của khối chỏm cầu này.
Câu 4:
Ta biết rằng hàm cầu liên quan đến giá p của một sản phẩm với nhu cầu của người tiêu dùng, hàm cung liên quan đến giá p của sản phẩm với mức độ sẵn sàng cung cấp sản phẩm của nhà sản xuất. Điểm cắt nhau (x0; p0) của đồ thị hàm cầu p = D(x) và đồ thị hàm cung p = S(x) được gọi là điểm cân bằng.
Các nhà kinh tế gọi diện tích của hình giới hạn bởi đồ thị hàm cầu, đường ngang p = p0 và đường thẳng đứng x = 0 là thặng dư tiêu dùng. Tương tự, diện tích của hình giới hạn bởi đồ thị của hàm cung, đường nằm ngang p = p0 và đường thẳng đứng x = 0 được gọi là thặng dư sản xuất, như trong Hình 4.19.
(Theo R.Larson, Brief Calculus: An Applied Approach, 8th edition, Cengage Learning, 2009).
Giả sử hàm cung và hàm cầu của một loại sản phẩm được mô hình hóa bởi:
Hàm cầu: p = −0,36x + 9 và hàm cung: p = 0,14x + 2, trong đó x là số đơn vị sản phẩm. Tìm thặng dư tiêu dùng và thặng dư sản xuất cho sản phẩm này.
Câu 5:
Tính thể tích của khối tròn xoay sinh ra khi quay hình phẳng giới hạn bởi các đường sau xung quanh trục Ox: y = 2x – x2, y = 0, x = 0, x = 2.
Câu 6:
Tính diện tích của hình phẳng giới hạn bởi các đường:
a) y = ex, y = x2 – 1, x = −1, x = 1;
b) y = sinx, y = x, \(x = \frac{\pi }{2},x = \pi \);
c) y = 9 – x2, y = 2x2, \(x = - \sqrt 3 ,x = \sqrt 3 \);
d) \(y = \sqrt x ,\)y = x2, x = 0, x = 1.
về câu hỏi!