Câu hỏi:

22/08/2024 45,420

Trong một nhà máy có hai phân xưởng. Phân xưởng I sản xuất 40% sản phẩm. Phân xưởng II sản xuất 60% sản phẩm. Xác suất làm ra phế phẩm của hai phân xưởng I và II tương ứng là 0,05 và 0,02. Chọn ngẫu nhiên một sản phẩm của nhà máy thì đó là phế phẩm. Tính xác suất để sản phẩm đó là do phân xưởng I sản xuất.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi A là biến cố: “Sản phẩm của phân xưởng I”;

       B là biến cố: “Sản phẩm là phế phẩm”.

Khi đó, \(\overline A \) là biến cố: “Sản phẩm của phân xưởng II”

              \(\overline B \) là biến cố: “Sản phẩm không là phế phẩm”.

Ta có: P(A) = 0,4; P(B | A) = 0,05.

           P(\(\overline A \)) = 0,6; P(B | \(\overline A \)) = 0,02.

Theo công thức Bayes, ta có:

P(A | B) = \(\frac{{P\left( A \right).P\left( {B|A} \right)}}{{P\left( A \right).P\left( {B|A} \right) + P\left( {\overline A } \right).P\left( {B|\overline A } \right)}}\)

              = \(\frac{{0,4.0,05}}{{0,4.0,05 + 0,6.0,02}} = \frac{5}{8}\).

Vậy xác suất để chọn được phế phẩm từ phân xưởng I là \(\frac{5}{8}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Gọi A là biến cố: “Chọn được chuồng II”.

           B là biến cố: “Bắt được con thỏ trắng”.

Do đó, P(A | B) là xác suất bắt được con thỏ trắng là con thỏ ở chuồng II.

           \(\overline A \) là biến cố: “Chọn được chuồng I”.

           \(\overline B \) là biến cố: “Bắt được con thỏ nâu”.

Ta có: P(A) = \(\frac{5}{6}\); P(\(\overline A \)) = \(\frac{1}{6}\); P(B | A) = \(\frac{{14}}{{25}}\); P(B | \(\overline A \)) = \(\frac{{12}}{{25}}\).

Theo công thức Bayes, ta có:

P(A | B) = \(\frac{{P\left( A \right).P\left( {B|A} \right)}}{{P\left( A \right).P\left( {B|A} \right) + P\left( {\overline A } \right).P\left( {B|\overline A } \right)}}\) = \(\frac{{35}}{{41}}\).

b) Ta cần tính P(\(\overline A \) | \(\overline B \)) là xác suất chọn được thỏ nâu ở chuồng I.

Ta có: P(A) = \(\frac{5}{6}\); P(\(\overline A \)) = \(\frac{1}{6}\); P(\(\overline B \) | \(\overline A \)) = \(\frac{{13}}{{25}}\), P(\(\overline B \) | A) = \(\frac{{11}}{{25}}\).

Theo công thức Bayes, ta có:

P(\(\overline A \) | \(\overline B \)) = \(\frac{{P\left( {\overline A } \right).P\left( {\overline B |\overline A } \right)}}{{P\left( {\overline A } \right).P\left( {\overline B |\overline A } \right) + P\left( A \right).P\left( {\overline B |A} \right)}}\) = \(\frac{{13}}{{68}}\).

Lời giải

Gọi A là biến cố: “Lấy được chiếc kẹo sô cô la đen từ túi I”

       B là biến cố: “Lấy được chiếc kẹo sô cô la trắng từ túi II”.

Ta có: P(A) = \(\frac{3}{5}\), P(\(\overline A \)) = \(\frac{2}{5}\).

Nếu A xảy ra tức là lấy được chiếc kẹo sô cô la đen từ túi I thì thêm 2 chiếc kẹo sô cô la đen vào túi II. Khi đó túi II có 9 chiếc kẹo với 6 chiếc sô cô la đen, 3 chiếc kẹo sô cô la trắng.

Nếu A không xảy ra tức là chọn được chiếc kẹo sô cô la trắng từ túi I thì thêm 2 chiếc kẹo sô cô la trắng vào túi II. Khi đó túi II có 9 chiếc kẹo với 4 chiếc sô cô la đen, 5 chiếc sô cô la trắng.

Vậy P(B | A) = \(\frac{3}{9}\), P(B | \(\overline A \)) = \(\frac{5}{9}\).

Theo công thức tính xác suất toàn phần, ta được:

P(B) = P(A).P(B | A) + P(\(\overline A \)).P(B | \(\overline A \))

        = \(\frac{3}{5}.\frac{3}{9} + \frac{2}{5}.\frac{5}{9} = \frac{{19}}{{45}}\).