Câu hỏi:
22/08/2024 40,067Trong một nhà máy có hai phân xưởng. Phân xưởng I sản xuất 40% sản phẩm. Phân xưởng II sản xuất 60% sản phẩm. Xác suất làm ra phế phẩm của hai phân xưởng I và II tương ứng là 0,05 và 0,02. Chọn ngẫu nhiên một sản phẩm của nhà máy thì đó là phế phẩm. Tính xác suất để sản phẩm đó là do phân xưởng I sản xuất.
Quảng cáo
Trả lời:
Gọi A là biến cố: “Sản phẩm của phân xưởng I”;
B là biến cố: “Sản phẩm là phế phẩm”.
Khi đó, \(\overline A \) là biến cố: “Sản phẩm của phân xưởng II”
\(\overline B \) là biến cố: “Sản phẩm không là phế phẩm”.
Ta có: P(A) = 0,4; P(B | A) = 0,05.
P(\(\overline A \)) = 0,6; P(B | \(\overline A \)) = 0,02.
Theo công thức Bayes, ta có:
P(A | B) = \(\frac{{P\left( A \right).P\left( {B|A} \right)}}{{P\left( A \right).P\left( {B|A} \right) + P\left( {\overline A } \right).P\left( {B|\overline A } \right)}}\)
= \(\frac{{0,4.0,05}}{{0,4.0,05 + 0,6.0,02}} = \frac{5}{8}\).
Vậy xác suất để chọn được phế phẩm từ phân xưởng I là \(\frac{5}{8}\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Gọi A là biến cố: “Chọn được chuồng II”.
B là biến cố: “Bắt được con thỏ trắng”.
Do đó, P(A | B) là xác suất bắt được con thỏ trắng là con thỏ ở chuồng II.
\(\overline A \) là biến cố: “Chọn được chuồng I”.
\(\overline B \) là biến cố: “Bắt được con thỏ nâu”.
Ta có: P(A) = \(\frac{5}{6}\); P(\(\overline A \)) = \(\frac{1}{6}\); P(B | A) = \(\frac{{14}}{{25}}\); P(B | \(\overline A \)) = \(\frac{{12}}{{25}}\).
Theo công thức Bayes, ta có:
P(A | B) = \(\frac{{P\left( A \right).P\left( {B|A} \right)}}{{P\left( A \right).P\left( {B|A} \right) + P\left( {\overline A } \right).P\left( {B|\overline A } \right)}}\) = \(\frac{{35}}{{41}}\).
b) Ta cần tính P(\(\overline A \) | \(\overline B \)) là xác suất chọn được thỏ nâu ở chuồng I.
Ta có: P(A) = \(\frac{5}{6}\); P(\(\overline A \)) = \(\frac{1}{6}\); P(\(\overline B \) | \(\overline A \)) = \(\frac{{13}}{{25}}\), P(\(\overline B \) | A) = \(\frac{{11}}{{25}}\).
Theo công thức Bayes, ta có:
P(\(\overline A \) | \(\overline B \)) = \(\frac{{P\left( {\overline A } \right).P\left( {\overline B |\overline A } \right)}}{{P\left( {\overline A } \right).P\left( {\overline B |\overline A } \right) + P\left( A \right).P\left( {\overline B |A} \right)}}\) = \(\frac{{13}}{{68}}\).
Lời giải
Gọi A là biến cố: “Lấy được chiếc kẹo sô cô la đen từ túi I”
B là biến cố: “Lấy được chiếc kẹo sô cô la trắng từ túi II”.
Ta có: P(A) = \(\frac{3}{5}\), P(\(\overline A \)) = \(\frac{2}{5}\).
Nếu A xảy ra tức là lấy được chiếc kẹo sô cô la đen từ túi I thì thêm 2 chiếc kẹo sô cô la đen vào túi II. Khi đó túi II có 9 chiếc kẹo với 6 chiếc sô cô la đen, 3 chiếc kẹo sô cô la trắng.
Nếu A không xảy ra tức là chọn được chiếc kẹo sô cô la trắng từ túi I thì thêm 2 chiếc kẹo sô cô la trắng vào túi II. Khi đó túi II có 9 chiếc kẹo với 4 chiếc sô cô la đen, 5 chiếc sô cô la trắng.
Vậy P(B | A) = \(\frac{3}{9}\), P(B | \(\overline A \)) = \(\frac{5}{9}\).
Theo công thức tính xác suất toàn phần, ta được:
P(B) = P(A).P(B | A) + P(\(\overline A \)).P(B | \(\overline A \))
= \(\frac{3}{5}.\frac{3}{9} + \frac{2}{5}.\frac{5}{9} = \frac{{19}}{{45}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
56 câu Chuyên đề Toán 12 Bài 2: Lôgarit có đáp án
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
140 câu Bài tập Hàm số mũ và Logarit cơ bản, nâng cao cực hay có lời giải chi tiết (P1)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận