Câu hỏi:
24/08/2024 524
Chọn phương án đúng.
Gieo đồng thời hai con xúc xắc cân đối, đồng chất. Xác suất để “Tổng số chấm xuất hiện trên hai con xúc xắc lớn hơn hoặc bằng 10” là
A. \(\frac{7}{{36}}.\)
B. \(\frac{2}{9}.\)
C. \(\frac{1}{6}.\)
D. \(\frac{5}{{36}}.\)
Chọn phương án đúng.
Gieo đồng thời hai con xúc xắc cân đối, đồng chất. Xác suất để “Tổng số chấm xuất hiện trên hai con xúc xắc lớn hơn hoặc bằng 10” là
A. \(\frac{7}{{36}}.\)
B. \(\frac{2}{9}.\)
C. \(\frac{1}{6}.\)
D. \(\frac{5}{{36}}.\)
Câu hỏi trong đề: Giải VTH Toán 9 KNTT Bài tập cuối chương 8 có đáp án !!
Quảng cáo
Trả lời:
Đáp án đúng là: C
Ta liệt kê được tất cả các kết quả có thể của phép thử bằng cách lập bảng sau:
Xúc xắc II Xúc xắc I |
1 |
2 |
3 |
4 |
5 |
6 |
1 |
(1, 1) |
(1, 2) |
(1, 3) |
(1, 4) |
(1, 5) |
(1, 6) |
2 |
(2, 1) |
(2, 2) |
(2, 3) |
(2, 4) |
(2, 5) |
(2, 6) |
3 |
(3, 1) |
(3, 2) |
(3, 3) |
(3, 4) |
(3, 5) |
(3, 6) |
4 |
(4, 1) |
(4, 2) |
(4, 3) |
(4, 4) |
(4, 5) |
(4, 6) |
5 |
(5, 1) |
(5, 2) |
(5, 3) |
(5, 4) |
(5, 5) |
(5, 6) |
6 |
(6, 1) |
(6, 2) |
(6, 3) |
(6, 4) |
(6, 5) |
(6, 6) |
Mỗi ô ở bảng trên là một kết quả có thể. Có 36 kết quả có thể là đồng khả năng.
Có 6 kết quả thuận lợi cho biến cố “Tổng số chấm xuất hiện trên hai con xúc xắc lớn hơn hoặc bằng 10” là (4, 6); (5, 5); (5, 6); (6, 4); (6, 5); (6, 6).
Vậy xác suất để “Tổng số chấm xuất hiện trên hai con xúc xắc lớn hơn hoặc bằng 10” là \(\frac{6}{{36}} = \frac{1}{6}.\)
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta liệt kê được tất cả các kết quả có thể của phép thử bằng cách lập bảng như sau:
Huy Minh |
4 |
5 |
7 |
8 |
9 |
11 |
5 |
(5, 4) |
(5, 5) |
(5, 7) |
(5, 8) |
(5, 9) |
(5, 11) |
6 |
(6, 4) |
(6, 5) |
(6, 7) |
(6, 8) |
(6, 9) |
(6, 11) |
7 |
(7, 4) |
(7, 5) |
(7, 7) |
(7, 8) |
(7, 9) |
(7, 11) |
8 |
(8, 4) |
(8, 5) |
(8, 7) |
(8, 8) |
(8, 9) |
(8, 11) |
9 |
(9, 4) |
(9, 5) |
(9, 7) |
(9, 8) |
(9, 9) |
(9, 11) |
10 |
(10, 4) |
(10, 5) |
(10, 7) |
(10, 8) |
(10, 9) |
(10, 11) |
Mỗi ô ở bảng trên là một kết quả có thể. Có 36 kết quả có thể là đồng khả năng.
a) Có 17 kết quả thuận lợi cho biến cố A là các ô (a, b) ở đó a > b. Vậy \(P\left( A \right) = \frac{{17}}{{36}}.\)
b) Có 15 kết quả thuận lợi cho biến cố B là các ô (a, b) ở đó a < b. Vậy \(P\left( B \right) = \frac{{15}}{{36}} = \frac{5}{{12}}.\)
Lời giải
Ta liệt kê được tất cả các kết quả có thể của phép thử bằng cách lập bảng như sau:
Xúc xắc II Xúc xắc I |
1 |
2 |
3 |
4 |
5 |
6 |
1 |
(1, 1) |
(1, 2) |
(1, 3) |
(1, 4) |
(1, 5) |
(1, 6) |
2 |
(2, 1) |
(2, 2) |
(2, 3) |
(2, 4) |
(2, 5) |
(2, 6) |
3 |
(3, 1) |
(3, 2) |
(3, 3) |
(3, 4) |
(3, 5) |
(3, 6) |
4 |
(4, 1) |
(4, 2) |
(4, 3) |
(4, 4) |
(4, 5) |
(4, 6) |
5 |
(5, 1) |
(5, 2) |
(5, 3) |
(5, 4) |
(5, 5) |
(5, 6) |
6 |
(6, 1) |
(6, 2) |
(6, 3) |
(6, 4) |
(6, 5) |
(6, 6) |
Mỗi ô ở bảng trên là một kết quả có thể. Có 36 kết quả có thể là đồng khả năng.
− Có 2 kết quả thuận lợi cho biến cố E là (5, 6); (6, 5). Vậy \(P\left( E \right) = \frac{2}{{36}} = \frac{1}{{18}}.\)
− Tổng số chấm bằng 8 là các ô (2, 6); (3, 5); (4, 4); (5, 3); (6, 2).
Tổng số chấm bằng 9 là các ô (3, 6); (4, 5); (5, 4); (6, 3).
Có 9 kết quả thuận lợi cho biến cố F là (2, 6); (3, 5); (4, 4); (5, 3); (6, 2); (3, 6); (4, 5); (5, 4); (6, 3). Vậy \(P\left( F \right) = \frac{9}{{36}} = \frac{1}{4}.\)
− Tổng số chấm bằng 5 là các ô (1, 4); (2, 3); (3, 2); (4, 1).
Tổng số chấm bằng 4 là các ô (1, 3); (2, 2); (3, 1).
Tổng số chấm bằng 3 là các ô (1, 2); (2, 1).
Tổng số chấm bằng 2 là ô (1, 1).
Có 10 kết quả thuận lợi cho biến cố G là (1, 4); (2, 3); (3, 2); (4, 1); (1, 3); (2, 2); (3, 1); (1, 2); (2, 1); (1, 1). Vậy \(P\left( G \right) = \frac{{10}}{{36}} = \frac{5}{{18}}.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.