Câu hỏi:
25/08/2024 204Cho hình vuông ABCD với tâm O. Gọi M, N, P, Q lần lượt là trung điểm các cạnh AD, DC, CB, BA (Hình 15).
a) Chứng minh tứ giác MNPQ là hình vuông.
b) Phép quay ngược chiều 90° tâm O biến các điểm O, D, N tương ứng thành các điểm nào?
c) Chỉ ra các phép quay tâm O giữ nguyên hình vuông MNPQ.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
a) Xét ∆ABC có Q, P lần lượt là trung điểm của AB, BC nên QP là đường trung bình của tam giác, do đó QP // AC và \(QP = \frac{1}{2}AC.\)
Tương tự, ta có: MN là đường trung bình của tam giác ACD, do đó MN // AC và \(MN = \frac{1}{2}AC.\)
Do đó MNPQ là hình bình hành.
Mặt khác, ta cũng chứng minh được MQ là đường trung bình của ∆ABD nên \(MQ = \frac{1}{2}BD.\)
Lại có ABCD là hình vuông nên AC = BD và AC ⊥ BD.
Suy ra MN = MQ và MN ⊥ MQ.
Khi đó hình bình hành MNPQ là hình vuông.
b) ⦁ Phép quay ngược chiều 90° tâm O biến điểm O tương ứng thành chính nó.
⦁ Do ABCD là hình vuông tâm O nên OA = OB = OC = OD.
Theo câu a, ta có \(\widehat {AOD} = 90^\circ \)
Do đó, tia OD quay ngược chiều 90° tâm O đến tia OA.
⦁ Tương tự, đối với hình vuông MNPQ ta cũng có ON = OM và \(\widehat {NOM} = 90^\circ \) nên tia ON quay ngược chiều 90° tâm O đến tia OM.
Vậy phép quay ngược chiều 90° tâm O biến các điểm O, D, N tương ứng thành các điểm O, A, M.
c) Các phép quay tâm O giữ nguyên hình vuông MNPQ là các phép quay thuận chiều α° tâm O và các phép quay ngược chiều α° tâm O, với α° lần lượt nhận các giá trị:
α1° = 90°; α2° = 180°; α3° = 270°; α4° = 360°.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Trên mặt phẳng tọa độ Oxy, cho hình vuông ABCD với A(1; 1), B(–1; 1), C(–1; –1), D(1; –1). Phép quay ngược chiều 45° tâm O biến các điểm A, B, C, D lần lượt thành các điểm A’, B’, C’, D’. Tính diện tích tứ giác A’B’C’D’.
Câu 2:
Cho hình vuông ABCD, I là giao điểm của hai đường chéo AC, BD. E, F, G, H lần lượt là trung điểm các cạnh AB, BC, CD, DA. Q, N lần lượt là giao điểm của AC với HE và AC với GF; M, P lần lượt là giao điểm của BD với EF và BD với GH (Hình 17). Phép quay thuận chiều 90° tâm I có giữ nguyên các tứ giác EFGH và tứ giác MNPQ hay không? Vì sao?
Câu 3:
Cho tam giác ABC. Về phía ngoài tam giác đó dựng các hình vuông ABMN và ACFG (Hình 22). Sử dụng kết quả bài tập 21 chứng minh BG = CN.
Câu 4:
Trên mặt phẳng toạ độ Oxy cho M(–4; 0), N(4; 0) và P(3; 3).
a) Phép quay ngược chiều α° tâm O biến điểm M thành điểm N. Tìm α.
b) Qua phép quay thuận chiều 90° tâm O, điểm P biến thành điểm nào?
Câu 5:
a) Cho hình bình hành ABCD, O là giao điểm của hai đường chéo AC và BD. Chỉ ra phép quay ngược chiều tâm O sao cho phép quay đó biến mỗi điểm C và D thành điểm đối xứng với nó qua tâm O.
b) Cho lục giác đều A1A2A3A4A5A6 tâm O. Chỉ ra phép quay thuận chiều tâm O sao cho phép quay đó biến mỗi điểm A3, A4, A5 thành điểm đối xứng với nó qua tâm O.
Câu 6:
Khi quan sát la bàn (Hình 18a), bác An thấy con tàu mà bác điều khiển đang đi thẳng và di chuyển về hướng Bắc. Hỏi bác phải thực hiện phép quay nào trên bánh lái (Hình 18b) để con tàu rẽ sang:
a) Hướng Tây?
b) Hướng Đông?
về câu hỏi!