Câu hỏi:
25/08/2024 651Trên mặt phẳng tọa độ Oxy, cho hình vuông ABCD với A(1; 1), B(–1; 1), C(–1; –1), D(1; –1). Phép quay ngược chiều 45° tâm O biến các điểm A, B, C, D lần lượt thành các điểm A’, B’, C’, D’. Tính diện tích tứ giác A’B’C’D’.
Câu hỏi trong đề: Giải SBT Toán 9 Bài 2. Phép quay có đáp án !!
Bắt đầu thiQuảng cáo
Trả lời:
Gọi H là hình chiếu của A trên Oy.
Ta có A(1; 1) nên suy ra AH = OH = 1.
Do đó ∆OAH vuông cân tại H nên \(\widehat {AOH} = 45^\circ .\)
Xét ∆OAH vuông tại H, ta có: OA2 = OH2 + AH2 (định lí Pythagore)
Suy ra \(OA = \sqrt {O{H^2} + A{H^2}} = \sqrt {{1^2} + {1^2}} = \sqrt 2 .\)
Tương tự, ta sẽ có \(OA = OB = OC = OD = \sqrt 2 .\)
Mặt khác, do ABCD là hình vuông nên hai đường chéo AC và BD cắt nhau tại trung điểm của mỗi đường, do đó O là tâm của hình vuông.
Do đó, phép quay ngược chiều 45° tâm O biến điểm A thành các điểm A’ nằm trên tia Oy sao cho \(OA' = OA = \sqrt 2 ,\) tức là \[A'\left( {0;\sqrt 2 } \right).\]
Tương tự, ta chứng minh được, phép quay ngược chiều 45° tâm O biến các điểm A, B, C, D lần lượt thành các điểm \[A'\left( {0;\sqrt 2 } \right),\,\,B'\left( { - \sqrt 2 ;0} \right),\] \(C'\left( {0; - \sqrt 2 } \right),\,\,D'\left( {\sqrt 2 ;0} \right).\)
Suy ra tứ giác A’B’C’D’ là hình vuông với hai đường chéo là A’C’ và B’D’, nên diện tích tứ giác A’B’C’D’ là:
\(\frac{1}{2} \cdot A'C' \cdot B'D' = \frac{1}{2} \cdot 2\sqrt 2 \cdot 2\sqrt 2 = 4\) (đơn vị diện tích).
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình vuông ABCD với tâm O. Gọi M, N, P, Q lần lượt là trung điểm các cạnh AD, DC, CB, BA (Hình 15).
a) Chứng minh tứ giác MNPQ là hình vuông.
b) Phép quay ngược chiều 90° tâm O biến các điểm O, D, N tương ứng thành các điểm nào?
c) Chỉ ra các phép quay tâm O giữ nguyên hình vuông MNPQ.
Câu 2:
Khi quan sát la bàn (Hình 18a), bác An thấy con tàu mà bác điều khiển đang đi thẳng và di chuyển về hướng Bắc. Hỏi bác phải thực hiện phép quay nào trên bánh lái (Hình 18b) để con tàu rẽ sang:
a) Hướng Tây?
b) Hướng Đông?
Câu 3:
Trên mặt phẳng toạ độ Oxy cho M(–4; 0), N(4; 0) và P(3; 3).
a) Phép quay ngược chiều α° tâm O biến điểm M thành điểm N. Tìm α.
b) Qua phép quay thuận chiều 90° tâm O, điểm P biến thành điểm nào?
Câu 4:
Cho hình vuông ABCD, I là giao điểm của hai đường chéo AC, BD. E, F, G, H lần lượt là trung điểm các cạnh AB, BC, CD, DA. Q, N lần lượt là giao điểm của AC với HE và AC với GF; M, P lần lượt là giao điểm của BD với EF và BD với GH (Hình 17). Phép quay thuận chiều 90° tâm I có giữ nguyên các tứ giác EFGH và tứ giác MNPQ hay không? Vì sao?
Câu 5:
a) Cho hình bình hành ABCD, O là giao điểm của hai đường chéo AC và BD. Chỉ ra phép quay ngược chiều tâm O sao cho phép quay đó biến mỗi điểm C và D thành điểm đối xứng với nó qua tâm O.
b) Cho lục giác đều A1A2A3A4A5A6 tâm O. Chỉ ra phép quay thuận chiều tâm O sao cho phép quay đó biến mỗi điểm A3, A4, A5 thành điểm đối xứng với nó qua tâm O.
Câu 6:
Cho hai hình vuông ABCD và BEFG (Hình 16).
a) Phép quay thuận chiều 90° tâm B biến các điểm A, B, G lần lượt thành các điểm nào?
b) Phép quay ngược chiều 45° tâm A biến các điểm B, E lần lượt thành các điểm nào?
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 01
Dạng 5: Bài toán về lãi suất ngân hàng có đáp án
Dạng 2: Kỹ thuật chọn điểm rơi trong bài toán cực trị xảy ra ở biên có đáp án
Bộ 5 đề thi giữa kì 2 Toán 9 Kết nối tri thức có đáp án - Đề 01
15 câu Trắc nghiệm Toán 9 Kết nối tri thức Bài 1. Khái niệm phương trình và hệ hai phương trình bậc nhất hai ẩn có đáp án
Dạng 6: Bài toán về tăng giá, giảm giá và tăng, giảm dân số có đáp án
Bộ 10 đề thi cuối kì 2 Toán 9 Chân trời sáng tạo có đáp án (Đề số 1)
Bộ 5 đề thi giữa kì 2 Toán 9 Kết nối tri thức có đáp án - Đề 03
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận