Câu hỏi:
25/08/2024 276Cho lục giác đều ABCDEF. Về phía ngoài lục giác dựng các hình vuông BAA1A2, CBA3A4, DCA5A6, EDA7A8, FEA9A10, AFA11A12. Đa giác A1A2A3…A11A12 có phải là đa giác đều không? Vì sao?
Câu hỏi trong đề: Giải SBT Toán 9 Bài tập cuối chương IX có đáp án !!
Quảng cáo
Trả lời:
Vì ABCDEF là lục giác đều nên nó có tất các cạnh bằng nhau và tất cả các góc đều bằng \[\frac{{2 \cdot 360^\circ }}{6} = 120^\circ .\]
Ta có \[\widehat {ABC} + \widehat {AB{A_2}} + \widehat {{A_2}B{A_3}} + \widehat {CB{A_3}} = 360^\circ \]
Suy ra \[\widehat {{A_2}B{A_3}} = 360^\circ - \widehat {ABC} - \widehat {AB{A_2}} - \widehat {CB{A_3}} = 360^\circ - 120^\circ - 90^\circ - 90^\circ = 60^\circ .\]
Do BA2 = AB (do BAA1A2 là hình vuông); BA3 = BC (do CBA3A4) và AB = CD nên BA2 = BA3.
Do đó BA2A3 là tam giác đều.
Từ đó suy ra: A2A3 = BA2 và \(\widehat {B{A_2}{A_3}} = 60^\circ .\)
Do đó A2A3 = BA (cùng bằng BA2) và \(\widehat {{A_1}{A_2}{A_3}} = \widehat {{A_1}{A_2}B} + \widehat {B{A_2}{A_3}} = 90^\circ + 60^\circ = 150^\circ .\)
Tương tự, ta chứng minh được đa giác A1A2A3…A11A12 có các góc đều bằng 150° và các cạnh đều bằng nhau và bằng BA.
Do đó, đa giác A1A2A3…A11A12 là đa giác đều.
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác đều ABC có các đường cao AD, BE, CF cắt nhau tại H. Gọi I, K, M theo thứ tự là trung điểm của HA, HB, HC. Chứng minh lục giác DKFIEM là lục giác đều.
Câu 2:
Trên mặt phẳng toạ độ Oxy cho A(–2; –2). Phép quay thuận chiều 90° tâm O biến điểm A thành điểm I. Khi đó tọa độ của điểm I là:
A. (–2; 0).
B. (0; –2).
C. (2; –2).
D. (–2; 2).
Câu 3:
Tổng số đo tất cả các góc của ngũ giác ABCDE là:
A. 560°.
B. 540°.
C. 520°.
D. 500°.
Câu 4:
Cho lục giác đều ABCDEF với tâm O thoả mãn phép quay thuận chiều 60° tâm O biến các điểm A, B, C, D, E, F lần lượt thành các điểm B, C, D, E, F, A. Các điểm M, N lần lượt là trung điểm của EF, BD.
a) Tìm α (0 < α < 180), biết phép quay ngược chiều α° tâm O biến các điểm D, C lần lượt thành các điểm B, A.
b) Chứng minh phép quay thuận chiều 60° tâm A biến các điểm O, N lần lượt thành các điểm F, M.
Câu 5:
Cho ngũ giác đều ABCDE. Về phía ngoài của ngũ giác đó dựng tam giác đều PDE (Hình 24). Tính số đo góc APC.
Câu 6:
Cho hình vuông ABCD và O là giao điểm của AC và BD. Gọi M là trung điểm của AB, N là trung điểm của AO (Hình 25). Phép quay ngược chiều 90° tâm O biến các điểm N, M lần lượt thành các điểm N’, M’.
a) Chứng minh tam giác BN'M' là tam giác vuông cân.
b) Tính tỉ số diện tích tam giác ANM và diện tích tam giác CN'M'.
c) Phát biểu “Phép quay thuận chiều 90° tâm N biến điểm O thành điểm M, biến điểm D thành điểm B” là đúng hay sai? Vì sao?
Câu 7:
Quan sát các đa giác ở Hình 23 và cho biết hình nào là đa giác đều.
Dạng 5: Bài toán về lãi suất ngân hàng có đáp án
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 01
15 câu Trắc nghiệm Toán 9 Kết nối tri thức Bài 1. Khái niệm phương trình và hệ hai phương trình bậc nhất hai ẩn có đáp án
Dạng 2: Kỹ thuật chọn điểm rơi trong bài toán cực trị xảy ra ở biên có đáp án
Đề thi minh họa TS vào 10 năm học 2025 - 2026_Môn Toán_Tỉnh Đắk Lắk
Bộ 10 đề thi cuối kì 2 Toán 9 Chân trời sáng tạo có đáp án (Đề số 1)
Dạng 6: Bài toán về tăng giá, giảm giá và tăng, giảm dân số có đáp án
123 bài tập Nón trụ cầu và hình khối có lời giải
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận