Câu hỏi:

25/08/2024 110

Cho lục giác đều ABCDEF. Về phía ngoài lục giác dựng các hình vuông BAA1A2, CBA3A4, DCA5A6, EDA7A8, FEA9A10, AFA11A12. Đa giác A1A2A3…A11A12 có phải là đa giác đều không? Vì sao?

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho lục giác đều ABCDEF. Về phía ngoài lục giác dựng các hình vuông BAA1A2, CBA3A4, DCA5A6, EDA7A8, FEA9A10, AFA11A12. Đa giác A1A2A3…A11A12 có phải là đa giác đều không? Vì sao? (ảnh 1)

Vì ABCDEF là lục giác đều nên nó có tất các cạnh bằng nhau và tất cả các góc đều bằng \[\frac{{2 \cdot 360^\circ }}{6} = 120^\circ .\]

Ta có \[\widehat {ABC} + \widehat {AB{A_2}} + \widehat {{A_2}B{A_3}} + \widehat {CB{A_3}} = 360^\circ \]

Suy ra \[\widehat {{A_2}B{A_3}} = 360^\circ - \widehat {ABC} - \widehat {AB{A_2}} - \widehat {CB{A_3}} = 360^\circ - 120^\circ - 90^\circ - 90^\circ = 60^\circ .\]

Do BA2 = AB (do BAA1A2 là hình vuông); BA3 = BC (do CBA3A4) và AB = CD nên BA2 = BA3.

Do đó BA2A3 là tam giác đều.

Từ đó suy ra: A2A3 = BA2 và \(\widehat {B{A_2}{A_3}} = 60^\circ .\)

Do đó A2A3 = BA (cùng bằng BA2) và \(\widehat {{A_1}{A_2}{A_3}} = \widehat {{A_1}{A_2}B} + \widehat {B{A_2}{A_3}} = 90^\circ + 60^\circ = 150^\circ .\)

Tương tự, ta chứng minh được đa giác A1A2A3…A11A12 có các góc đều bằng 150° và các cạnh đều bằng nhau và bằng BA.

Do đó, đa giác A1A2A3…A11A12 là đa giác đều.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác đều ABC có các đường cao AD, BE, CF cắt nhau tại H. Gọi I, K, M theo thứ tự là trung điểm của HA, HB, HC. Chứng minh lục giác DKFIEM là lục giác đều.

Xem đáp án » 25/08/2024 496

Câu 2:

Cho hình vuông ABCD và O là giao điểm của AC và BD. Gọi M là trung điểm của AB, N là trung điểm của AO (Hình 25). Phép quay ngược chiều 90° tâm O biến các điểm N, M lần lượt thành các điểm N’, M’.

a) Chứng minh tam giác BN'M' là tam giác vuông cân.

b) Tính tỉ số diện tích tam giác ANM và diện tích tam giác CN'M'.

c) Phát biểu “Phép quay thuận chiều 90° tâm N biến điểm O thành điểm M, biến điểm D thành điểm B” là đúng hay sai? Vì sao?

Cho hình vuông ABCD và O là giao điểm của AC và BD. Gọi M là trung điểm của AB, N là trung điểm của AO (Hình 25). Phép quay ngược chiều 90° tâm O biến các điểm N, M lần lượt thành các điểm N’, M’. (ảnh 1)

Xem đáp án » 25/08/2024 258

Câu 3:

Tổng số đo tất cả các góc của ngũ giác ABCDE là:

A. 560°.

B. 540°.

C. 520°.

D. 500°.

Xem đáp án » 25/08/2024 251

Câu 4:

Cho lục giác đều ABCDEF với tâm O thoả mãn phép quay thuận chiều 60° tâm O biến các điểm A, B, C, D, E, F lần lượt thành các điểm B, C, D, E, F, A. Các điểm M, N lần lượt là trung điểm của EF, BD.

a) Tìm α (0 < α < 180), biết phép quay ngược chiều α° tâm O biến các điểm D, C lần lượt thành các điểm B, A.

b) Chứng minh phép quay thuận chiều 60° tâm A biến các điểm O, N lần lượt thành các điểm F, M.

Xem đáp án » 25/08/2024 163

Câu 5:

Quan sát các đa giác ở Hình 23 và cho biết hình nào là đa giác đều.

Quan sát các đa giác ở Hình 23 và cho biết hình nào là đa giác đều. (ảnh 1)

Xem đáp án » 25/08/2024 148

Câu 6:

Cho ngũ giác đều ABCDE. Về phía ngoài của ngũ giác đó dựng tam giác đều PDE (Hình 24). Tính số đo góc APC.

Cho ngũ giác đều ABCDE. Về phía ngoài của ngũ giác đó dựng tam giác đều PDE (Hình 24). Tính số đo góc APC. (ảnh 1)

Xem đáp án » 25/08/2024 123

Bình luận


Bình luận