Câu hỏi:

25/08/2024 272

Trên mặt phẳng tọa độ Oxy cho hình vuông ABCD với A(0; 2), B(–2; 0), C(0; –2), D(2; 0). Phép quay thuận chiều 90° tâm O biến các điểm A, B, C, D lần lượt thành các điểm A’, B’, C’, D’. Tính chu vi tứ giác A’B’C’D’.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Trên mặt phẳng tọa độ Oxy cho hình vuông ABCD với A(0; 2), B(–2; 0), C(0; –2), D(2; 0). Phép quay thuận chiều 90° tâm O biến các điểm A, B, C, D lần lượt thành các điểm A’, B’, C’, D’. Tính chu vi tứ giác A’B’C’D’. (ảnh 1)

Do ABCD là hình vuông nên hai đường chéo AC và BD vuông góc với nhau tại trung điểm của mỗi đường.

Ta có A(0; 2), B(–2; 0), C(0; –2), D(2; 0) nên B, D cùng nằm trên Ox và A, C cùng nằm trên Oy.

Ta cũng suy ra được OA = OB = OC = OD hay O là tâm của hình vuông ABCD.

Xét ∆OAB vuông tại O, theo định lí Pythagore, ta có:

AB2 = OA2 + OB2 = 22 + 22 = 8.

Suy ra \(AB = \sqrt 8 = 2\sqrt 2 .\) Như vậy, hình vuông ABCD có cạnh bằng \(2\sqrt 2 .\)

Ta có phép quay thuận chiều 90° tâm O giữ nguyên hình vuông ABCD do đó chu vi tứ giác A’B’C’D’ bằng chu vi hình vuông ABCD và bằng \(4 \cdot 2\sqrt 2 = 8\sqrt 2 \) (đơn vị chiều dài).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác đều ABC có các đường cao AD, BE, CF cắt nhau tại H. Gọi I, K, M theo thứ tự là trung điểm của HA, HB, HC. Chứng minh lục giác DKFIEM là lục giác đều. (ảnh 1)

Vì ABC là tam giác đều và CF là đường cao nên CF cũng là đường phân giác của \(\widehat {ACB}.\) Suy ra \(\widehat {{C_1}} = \frac{1}{2}\widehat {ACB} = \frac{1}{2} \cdot 60^\circ = 30^\circ .\)

Tam giác HDC vuông tại D có

\[\widehat {{C_1}} + \widehat {{H_1}} = 90^\circ ,\] suy ra \[\widehat {{H_1}} = 90^\circ - \widehat {{C_1}} = 90^\circ - 30^\circ = 60^\circ ;\]

M là trung điểm của HC hay DM là đường trung tuyến ứng với cạnh huyền nên nên MD = MH = MC (cùng bằng một nửa cạnh huyền HC).

Do đó, tam giác DHM là tam giác đều.

Tương tự, ta cũng chứng minh được các tam giác HEM, HEI, HIF, HFK, HKD là các tam giác đều.

Từ đó suy ra lục giác DKFIEM có các góc đều bằng 2.60° = 120° và các cạnh đều bằng nhau, do đó lục giác DKFIEM là lục giác đều.

Lời giải

Đáp án đúng là: D
Trên mặt phẳng toạ độ Oxy cho A(–2; –2). Phép quay thuận chiều 90° tâm O biến điểm A thành điểm I. Khi đó tọa độ của điểm I là: A. (–2; 0). B. (0; –2). C. (2; –2). D. (–2; 2). (ảnh 1)

Gọi H là hình chiếu của A trên Ox. Ta có A(–2; –2) nên OH = AH = |–2| = 2.

Do đó ∆AOH vuông cân tại H, nên \(\widehat {AOH} = 45^\circ .\)

Xét ∆AOH vuông tại H, ta có: OA2 = OH2 + AH2 (định lí Pythagore).

Suy ra \(OA = \sqrt {O{H^2} + A{H^2}} = \sqrt {{2^2} + {2^2}} = \sqrt 8 = 2\sqrt 2 .\)

Gọi I là điểm đối xứng với A qua Ox, do đó I(–2; 2). Ta cũng chứng minh được \(\widehat {HOI} = 45^\circ \) và \(OI = 2\sqrt 2 .\)

Như vậy, Phép quay thuận chiều 90° tâm O biến điểm A(–2; –2) thành điểm I(–2; 2).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay