Câu hỏi:
25/08/2024 367
Một khối gỗ gồm một hình cầu (C) bán kính R và một hình nón (N) có bán kính đường tròn đáy và đường sinh lần lượt là r (cm), l (cm) thoả mãn 2R = l và 2l = 3r. Biết tổng diện tích mặt cầu (C) và diện tích toàn phần của hình nón (N) là 171π cm2. Tính diện tích của mặt cầu (C) (theo đơn vị centimét vuông và làm tròn kết quả đến hàng đơn vị).
Một khối gỗ gồm một hình cầu (C) bán kính R và một hình nón (N) có bán kính đường tròn đáy và đường sinh lần lượt là r (cm), l (cm) thoả mãn 2R = l và 2l = 3r. Biết tổng diện tích mặt cầu (C) và diện tích toàn phần của hình nón (N) là 171π cm2. Tính diện tích của mặt cầu (C) (theo đơn vị centimét vuông và làm tròn kết quả đến hàng đơn vị).
Câu hỏi trong đề: Giải SBT Toán 9 Bài 3. Hình cầu có đáp án !!
Quảng cáo
Trả lời:
Từ 2R = l và 2l = 3r, suy ra \[R = \frac{l}{2},\,\,r = \frac{{2l}}{3}.\]
Diện tích mặt cầu (C) là: \(4\pi {R^2} = 4\pi \cdot {\left( {\frac{l}{2}} \right)^2} = 4\pi \cdot \frac{l}{4} = \pi {l^2}.\)
Diện tích toàn phần của hình nón (N) là:
\(\pi rl + \pi {r^2} = \pi \cdot \frac{{2l}}{3} \cdot l + \pi \cdot {\left( {\frac{{2l}}{3}} \right)^2} = \frac{2}{3}\pi {l^2} + \frac{4}{9}\pi {l^2} = \frac{{10\pi {l^2}}}{9}.\)
Do tổng diện tích mặt cầu (C) và diện tích toàn phần của hình nón (N) là 171π cm2 nên:
\(\pi {l^2} + \frac{{10\pi {l^2}}}{9} = 171\pi \) hay 19πl2 = 171π.9
Suy ra l2 = 81 nên l = 9 cm (do l > 0).
Khi đó, bán kính mặt cầu (C) là \[R = \frac{l}{2} = \frac{9}{2} = 4,5\] (cm).
Vậy diện tích của mặt cầu (C) là:
4πR2 = 4π.(4,5)2 = 81π ≈ 81.3,14 = 254,34 ≈ 254 (cm2).
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi bán kính đường tròn đáy của cái cốc là R (cm) (R > 0).
Thể tích viên bi có dạng hình cầu với bán kính là 3 cm là:
\(\frac{4}{3}\pi \cdot {3^3} = 36\pi \;\;({\rm{c}}{{\rm{m}}^3}).\)
Dễ thấy khi viên bi chìm xuống đáy cốc thì lượng nước trong cốc được dâng thêm bằng thể tích viên bi. Mặt khác, khi viên bi chìm xuống đáy cốc thì chiều cao mực nước dâng thêm 1,5 cm, do đó ta có πR2.1,5 = 36π.
Suy ra R2 = 24.
Thể tích của khối nước ban đầu trong cốc là:
πR2.7,2 = π.24.7,2 = 172,8π ≈ 172,8 . 3,14 ≈ 542,6 (cm3).
Lời giải
Ta có bán kính hình cầu và bán kính đáy hình trụ đều là: 1,8 : 2 = 0,9 (m).
Tổng thể tích của hai nửa hình cầu chính là thể tích của một hình cầu có cùng bán kính và bằng:
\(\frac{4}{3}\pi {R^3} = \frac{4}{3}\pi \cdot {\left( {0,9} \right)^3} = 0,972\pi \) (m3).
Thể tích phần hình trụ là:
V = πR2h = π.(0,9)2.3,62 = 2,9322π (m3).
Thể tích của bồn chứa là:
0,972π + 2,9322π = 3,9042π ≈ 3,9042.3,14 ≈ 12,3 (m3).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.