Câu hỏi:
25/08/2024 1,055
Một món đồ chơi có dạng như Hình 26. Vỏ ngoài món đồ chơi là một hình nón (bằng nhựa trong suốt) có bán kính đường tròn đáy là \[3\sqrt 3 \] cm và đường sinh là \(6\sqrt 3 \;{\rm{cm}}.\) Trong hình nón là hai quả cầu (bằng thuỷ tinh) to và nhỏ, bán kính của chúng lần lượt là 3 cm và 1 cm. Tính tỉ số tổng thể tích của hai quả cầu và thể tích hình nón đó.
Một món đồ chơi có dạng như Hình 26. Vỏ ngoài món đồ chơi là một hình nón (bằng nhựa trong suốt) có bán kính đường tròn đáy là \[3\sqrt 3 \] cm và đường sinh là \(6\sqrt 3 \;{\rm{cm}}.\) Trong hình nón là hai quả cầu (bằng thuỷ tinh) to và nhỏ, bán kính của chúng lần lượt là 3 cm và 1 cm. Tính tỉ số tổng thể tích của hai quả cầu và thể tích hình nón đó.

Câu hỏi trong đề: Giải SBT Toán 9 Bài 3. Hình cầu có đáp án !!
Quảng cáo
Trả lời:
Tổng thể tích của hai quả cầu là:
\(\frac{4}{3}\pi \cdot {1^3} + \frac{4}{3}\pi \cdot {3^3} = \frac{{112\pi }}{3}\) (cm3).
Ta có công thức tính độ dài đường sinh l qua chiều cao h và bán kính đáy r của hình nón là:
l2 = h2 + r2. Suy ra h2 = l2 – r2.
Khi đó, chiều cao của hình nón là:
\(\sqrt {{{\left( {6\sqrt 3 } \right)}^2} - {{\left( {3\sqrt 3 } \right)}^2}} = \sqrt {108 - 27} = \sqrt {81} = 9\) (cm).
Thể tích hình nón là:
\[\frac{1}{3} \cdot \pi \cdot {\left( {3\sqrt 3 } \right)^2} \cdot 9 = 81\pi \;\] (cm3).
Tỉ số tổng thể tích của hai quả cầu và thể tích hình nón là:
\(\frac{{112\pi }}{3}:\left( {81\pi } \right) = \frac{{112\pi }}{3} \cdot \frac{1}{{81\pi }} = \frac{{112}}{{243}}.\)
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi bán kính đường tròn đáy của cái cốc là R (cm) (R > 0).
Thể tích viên bi có dạng hình cầu với bán kính là 3 cm là:
\(\frac{4}{3}\pi \cdot {3^3} = 36\pi \;\;({\rm{c}}{{\rm{m}}^3}).\)
Dễ thấy khi viên bi chìm xuống đáy cốc thì lượng nước trong cốc được dâng thêm bằng thể tích viên bi. Mặt khác, khi viên bi chìm xuống đáy cốc thì chiều cao mực nước dâng thêm 1,5 cm, do đó ta có πR2.1,5 = 36π.
Suy ra R2 = 24.
Thể tích của khối nước ban đầu trong cốc là:
πR2.7,2 = π.24.7,2 = 172,8π ≈ 172,8 . 3,14 ≈ 542,6 (cm3).
Lời giải
Ta có bán kính hình cầu và bán kính đáy hình trụ đều là: 1,8 : 2 = 0,9 (m).
Tổng thể tích của hai nửa hình cầu chính là thể tích của một hình cầu có cùng bán kính và bằng:
\(\frac{4}{3}\pi {R^3} = \frac{4}{3}\pi \cdot {\left( {0,9} \right)^3} = 0,972\pi \) (m3).
Thể tích phần hình trụ là:
V = πR2h = π.(0,9)2.3,62 = 2,9322π (m3).
Thể tích của bồn chứa là:
0,972π + 2,9322π = 3,9042π ≈ 3,9042.3,14 ≈ 12,3 (m3).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.