Câu hỏi:

28/08/2024 235

Tam giác đều cạnh bằng \(8a\sqrt 3 \) có bán kính đường tròn nội tiếp là

A. 4a.

B. 2a.

C. \(4a\sqrt 3 .\)

D. \(2a\sqrt 3 .\)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: A

Bán kính đường tròn nội tiếp tam giác đều cạnh \(8a\sqrt 3 \)\[\frac{{8a\sqrt 3 \cdot \sqrt 3 }}{6} = \frac{{24a}}{6} = 4a.\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác nhọn ABC (AB < AC) có hai đường cao BD và CE.  a) Chứng minh bốn điểm B, C, D, E cùng thuộc một đường tròn. (ảnh 1)

a) Ta có BD AC, CE AB nên tam giác BEC vuông tại E và tam giác BDC vuông tại D.

∆BEC vuông tại E nên nội tiếp đường tròn đường kính BC. (1)

∆BDC vuông tại D nên nội tiếp đường tròn đường kính BC. (2)

Từ (1) và (2) suy ra bốn điểm B, C, D, E cùng thuộc đường tròn đường kính BC.

b) Ta có BD là bán kính đường tròn (B; BD) và BD AC nên AC là tiếp tuyến của đường tròn (B; BD).

c) Xét ∆BHD ∆BDC có:

Góc B chung; \[\widehat {BHD} = \widehat {BDC} = 90^\circ \]

Do đó ∆BHD ∆BDC (g.g)

Suy ra \[\frac{{BD}}{{BC}} = \frac{{BH}}{{BD}}\]  hay BD2 = BH.BC.

Ta lại có BD = BK (bán kính đường tròn (B; BD)) nên BK2 = BH.BC.

Suy ra \[\frac{{BH}}{{BK}} = \frac{{BK}}{{BC}}\]

Xét ∆BHK và ∆BKC có:

Góc B chung; \[\frac{{BH}}{{BK}} = \frac{{BK}}{{BC}}\]

Do đó ∆BHK ∆BKC (c.g.c)

Suy ra \(\widehat {BKH} = \widehat {BCK}\) (hai góc tương ứng).

\(\widehat {BMH} = \widehat {BCK}\) (cùng phụ với \(\widehat {ABC})\) nên \(\widehat {BMH} = \widehat {BKH}.\)

Lời giải

Cho đường tròn tâm O, đường kính AB. Gọi C là điểm chính giữa của cung AB. Trên đoạn thẳng AB lấy điểm E sao cho BE = AC. Tia AC và tia BD cắt nhau tại M. Vẽ EH vuông góc với AC tại H (ảnh 1)

a) Ta có \(\widehat {ACB} = 90^\circ \) (góc nội tiếp chắn nửa đường tròn (O) đường kính AB), suy ra BC AC.

Mà EH AC (giả thiết), suy ra EH // BC.

b) Vì C là điểm chính giữa của cung AB và AB là đường kính của đường tròn (O), suy ra  

Vì AD là tia phân giác của \(\widehat {BAC}\) (giả thiết) nên \(\widehat {CAD} = \widehat {BAD} = \frac{1}{2}\widehat {CAB},\) suy ra

Xét đường tròn (O) có:

\(\widehat {CAB}\) là góc nội tiếp chắn cung CB nên

\(\widehat {CBA}\) là góc nội tiếp chắn cung CA nên

\(\widehat {CBD}\) là góc nội tiếp chắn cung CD nên

Suy ra \(\widehat {MAB} = 45^\circ ;\) \(\widehat {MBA} = \widehat {MBC} + \widehat {CBA} = 22,5^\circ + 45^\circ = 67,5^\circ .\)

Xét ∆MAB có: \[\widehat {AMB} + \widehat {MAB} + \widehat {MBA} = 180^\circ \]

Suy ra \[\widehat {AMB} = 180^\circ - \widehat {MAB} - \widehat {MBA} = 180^\circ - 45^\circ - 67,5^\circ = 67,5^\circ .\]

c) Vì EH // BC nên \(\widehat {AEK} = \widehat {ABC}\) (hai góc đồng vị).

\(\widehat {AFK} = \widehat {AFC} = \widehat {ABC}\) (góc nội tiếp cùng chắn cung AC của đường tròn (O)).

Suy ra \(\widehat {AEK} = \widehat {AFK}.\)

d) Tam giác AIC có AK là tia phân giác của \(\widehat {CAI},\) suy ra \(\frac{{AI}}{{AC}} = \frac{{KI}}{{KC}}.\)

Tam giác CIB có EK // CB, suy ra \(\frac{{IE}}{{BE}} = \frac{{KI}}{{KC}}\) (định lí Thalès)

Từ (1) và (2) suy ra \(\frac{{AI}}{{AC}} = \frac{{IE}}{{BE}}.\)

Mà AC = BE (giả thiết) nên  AI = IE.

Vậy I là trung điểm của đoạn thẳng AE.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay