Câu hỏi:

28/08/2024 118

Cho hình thang cân ABCD có AB // CD. Chứng minh ABCD là tứ giác nội tiếp.

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho hình thang cân ABCD có AB // CD. Chứng minh ABCD là tứ giác nội tiếp.  (ảnh 1)

Từ A, B lần lượt kẻ AH, BK vuông góc với CD (H, K CD).

Ta có AH CD, AB // CD nên AH AB.

Xét ∆AHD và ∆BKC có:

\(\widehat {AHD} = \widehat {BKC} = 90^\circ ,\) AD = BC và \(\widehat {ADH} = \widehat {BCK}\) (do ABCD là hình thang cân)

Do đó ∆ADH = ∆BCK (cạnh huyền – góc nhọn)

Suy ra DH = CK (hai cạnh tương ứng).

Xét tứ giác ABKH có: \[\widehat {AHK} = \widehat {BKH} = \widehat {HAB} = 90^\circ \] nên ABKH là hình chữ nhật.

Gọi E, F lần lượt là trung điểm của AB và HK.

Suy ra EF là đường trung trực của AB và HK.

Ta có DH = CK và HF = KF nên DF = CF, do đó F là trung điểm của DC.

Suy ra EF cũng là đường trung trực của CD.

Gọi M là trung điểm của AD. Vẽ đường trung trực MO của AD, MO cắt EF tại O.

Khi đó, O nằm trên đường trung trực của AB, AD, DC nên OA = OB, OA = OD, OD = OC

Suy ra OA = OB = OC = OD hay A, B, C, D cùng thuộc đường tròn (O; OA).

Vậy hình thang cân ABCD nội tiếp đường tròn (O; OA).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác nhọn ABC (AB < AC) có hai đường cao BD và CE.

a) Chứng minh bốn điểm B, C, D, E cùng thuộc một đường tròn.

b) Vẽ đường tròn (B; BD). Chứng minh AC là tiếp tuyến của đường tròn (B; BD).

c) Đường tròn (B; BD) cắt CE tại K(K nằm giữa E và C). Qua D vẽ đường thẳng vuông góc với BC tại H và cắt đường thẳng AB tại M. Chứng minh \(\widehat {BMH} = \widehat {BKH}.\)

Xem đáp án » 28/08/2024 2,901

Câu 2:

Cho tam giác ABC có (O) là đường tròn ngoại tiếp. Vẽ đường cao AH của tam giác ABC và đường kính AD của đường tròn (O). Biết AB = 8 cm; AC = 15 cm và AH = 5 cm.

a) Chứng minh ∆AHB ᔕ ∆ACD.

b) Tính độ dài bán kính của đường tròn.

Xem đáp án » 28/08/2024 438

Câu 3:

Cho hình vuông ABCD có O là giao điểm của hai đường chéo. Phép quay tâm O biến hình vuông ABCD thành chính nó có góc quay là

A. 45°.

B. 90°.

C. 135°.

D. 210°.

Xem đáp án » 28/08/2024 391

Câu 4:

Cho tam giác vuông ABC có độ dài hai cạnh góc vuông là 5 cm, 12 cm. Bán kính R của đường tròn ngoại tiếp tam giác ABC có độ dài là

A. 13 cm.

B. 10 cm.

C. 5 cm.

D. 6,5 cm.

Xem đáp án » 28/08/2024 208

Câu 5:

Cho tam giác ABC ngoại tiếp đường tròn (I; r); D, E, F lần lượt là các tiếp điểm của cạnh AB, BC, AC với đường tròn (I; r) (Hình 4).

Cho tam giác ABC ngoại tiếp đường tròn (I; r); D, E, F lần lượt là các tiếp điểm của cạnh AB, BC, AC với đường tròn (I; r) (Hình 4).  a) Ba đường trung trực của tam giác ABC cắt nhau tại I.  b) AD = AF  c) BD + CF = BC.  d) IE = r. (ảnh 1)

a) Ba đường trung trực của tam giác ABC cắt nhau tại I.

b) AD = AF

c) BD + CF = BC.

d) IE = r.

Xem đáp án » 28/08/2024 191

Câu 6:

Cho đường tròn tâm O, đường kính AB. Gọi C là điểm chính giữa của cung AB. Trên đoạn thẳng AB lấy điểm E sao cho BE = AC. Tia AC và tia BD cắt nhau tại M. Vẽ EH vuông góc với AC tại H. Tia phân giác của góc \(\widehat {BAC}\) cắt EH tại K và cắt đường tròn (O) tại D. Tia CK cắt AB tại I và cắt đường tròn (O) tại F.

a) Chứng minh EH // BC.

b) Tính số đo của \(\widehat {AMB}.\)

c) Chứng minh \(\widehat {AEK} = \widehat {AFK}.\)

d) Chứng minh I là trung điểm của đoạn thẳng AE.

Xem đáp án » 28/08/2024 187

Câu 7:

Số đo của \(\widehat {BCD}\) trong Hình 3 là

Số đo của góc BCD trong Hình 3 là  A. 100°.  B. 160°.  C. 80°.  D. 120°. (ảnh 1)

A. 100°.

B. 160°.

C. 80°.

D. 120°.

Xem đáp án » 28/08/2024 124

Bình luận


Bình luận