Câu hỏi:
19/09/2024 185Bảng dưới đây thống kê cân nặng của một số quả cam canh được thu hoạch từ một vườn cam vào năm 2022 và năm 2023.
Hãy so sánh độ đồng đều của cân nặng và trái cam thu hoạch trong hai năm trên
a) theo khoảng biến thiên;
b) theo khoảng tứ phân vị;
c) theo phương sai.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
a) Khoảng biến thiên của cân nặng các trái cam thu hoạch năm 2022 là:
R2022 = 150 – 110 = 40 (g).
Khoảng biến thiên của cân nặng các trái cam thu hoạch năm 2023 là:
R2023 = 140 – 100 = 40 (g).
Nếu so sánh theo khoảng biến thiên thì độ đồng đều của cân nặng các trái cam thu hoạch trong hai năm không có sự khác biệt.
b) Với mẫu số liệu năm 2022, ta có:
Cỡ mẫu là: n2022 = 0 + 24 + 35 + 14 + 6 = 79.
Có: \(\frac{{{n_{2022}}}}{4} = \frac{{79}}{4} = 19,75\).
Tứ phân vị thứ nhất của mẫu số liệu gốc là x20 ∈ [110; 120).
Do đó, Q1 = 110 + \(\frac{{19,75 - 0}}{{24}}\left( {120 - 110} \right)\) = \(\frac{{5675}}{{48}}\).
Có: \(\frac{{3{n_{2023}}}}{4} = \frac{{3.79}}{4} = 59,25\).
Tứ phân vị thứ ba của mẫu số liệu gốc là x60 ∈ [130; 140).
Do đó, Q3 = 130 + \(\frac{{59,25 - \left( {24 + 35} \right)}}{{14}}\left( {140 - 130} \right)\) = \(\frac{{3645}}{{28}}\).
Khoảng tứ phân vị của mẫu số liệu là:
∆Q2022 = Q3 – Q1 = \(\frac{{3645}}{{28}}\) − \(\frac{{5675}}{{48}}\) ≈ 11,95.
Với mẫu số liệu năm 2023, ta có:
Cỡ mẫu: n2023 = 14 + 23 + 26 + 24 + 0 = 87.
Có: \(\frac{{{n_{2023}}}}{4} = \frac{{87}}{4} = 21,75\).
Tứ phân vị thứ nhất của mẫu số liệu gốc là x22 ∈ [110; 120).
Do đó, Q1 = 110 + \(\frac{{21,75 - 14}}{{23}}\left( {120 - 110} \right)\) = \(\frac{{5215}}{{46}}\).
Có: \(\frac{{3{n_{2023}}}}{4} = \frac{{3.87}}{4} = 65,25\).
Tứ phân vị thứ ba của mẫu số liệu gốc là x66 ∈ [130; 140).
Do đó, Q3 = 130 + \(\frac{{65,25 - \left( {14 + 23 + 26} \right)}}{{24}}\left( {140 - 130} \right)\) = \(\frac{{2095}}{{16}}\).
Khoảng tứ phân vị của mẫu số liệu là:
∆Q2023 = Q3 – Q1 = \(\frac{{2095}}{{16}}\) − \(\frac{{5215}}{{46}}\) ≈ 17,57.
Nếu so sánh theo khoảng tứ phân vị thì cân nặng các trái cam thu hoạch trong năm 2022 đồng đều hơn cân nặng các trái cam thu hoạch trong năm 2023.
c) Ta có bảng số liệu các giá trị đại diện như sau:
Xét mẫu số liệu năm 2022:
Số trung bình của mẫu số liệu ghép nhóm là:
\({\overline x _{2022}}\) = \(\frac{{24.115 + 125.35 + 135.14 + 145.6}}{{79}}\) = \(\frac{{9895}}{{79}}\).
Phương sai của mẫu số liệu ghép nhóm là:
\(s_{2022}^2\) = \(\frac{{{{24.115}^2} + {{125}^2}.35 + {{135}^2}.14 + {{145}^2}.6}}{{79}} - {\left( {\frac{{9895}}{{79}}} \right)^2}\) ≈ 78,41.
Xét mẫu số liệu năm 2023:
Số trung bình của mẫu số liệu ghép nhóm là:
\({\overline x _{2023}}\) = \(\frac{{105.14 + 115.23 + 125.26 + 135.24}}{{87}}\) = \(\frac{{3535}}{{29}}\).
Phương sai của mẫu số liệu ghép nhóm là:
\(s_{2023}^2\) = \(\frac{{{{105}^2}.14 + {{115}^2}.23 + {{125}^2}.26 + {{135}^2}.24}}{{87}} - {\left( {\frac{{3535}}{{29}}} \right)^2}\) ≈ 106,76.
Do \(s_{2023}^2\) > \(s_{2022}^2\) nên khi so sánh theo phương sai thì cân nặng các cam thu hoạch năm 2022 đồng đều hơn cân nặng các trái cam thu hoạch năm 2023.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Chị yến thống kê lại thời gian chạy cự li 200 m của mình ở một số lần luyện tập trong năm 2022 và 2023 như sau:
a) Hãy tính các số đặc trưng đo mức độ phân tán thời gian chạy mỗi năm của chị Yến (kết quả làm tròn đến hàng phần nghìn).
b) Độ phân tán của mẫu số liệu cho biết điều gì?
Câu 2:
Chiều cao của một số cây giống sau khi nảy mầm được 4 tuần được biểu diễn ở bảng sau:
Tính phương sai và độ lệch chuẩn của mẫu số liệu ghép nhóm trên (kết quả làm tròn đến hàng phần trăm).
Câu 3:
Bác Xuân biểu diễn thời gian tập thể dục mỗi ngày của mình trong 120 ngày liên tiếp ở biểu đồ tần số tương đối ghép nhóm dưới đây.
a) Lập bảng tần số ghép nhóm cho dữ liệu ở biểu đồ trên.
b) Tính độ lệch chuẩn của mẫu số liệu ghép nhóm trên (kết quả làm tròn đến hàng phần trăm).
Câu 4:
Thầy giáo cho các bạn học sinh lớp 8 vận dụng khái niệm tam giác đồng dạng để thực hành đo chiều cao của cột cờ. Kết quả đo của các bạn trong lớp được biểu diễn ở bảng sau:
Tính độ lệch chuẩn của mẫu số liệu ghép nhóm trên (kết quả làm tròn đến hàng trăm).
Câu 5:
Thời gian bù giờ của 64 trận bóng đá trong một giải đấu được ghi lại ở bảng sau:
Tính phương sai và độ lệch chuẩn của mẫu số liệu ghép nhóm trên (kết quả làm tròn đến hàng phần trăm).
về câu hỏi!