Câu hỏi:
19/09/2024 4,704
Trong một giải bóng đá, số cổ động viên đến sân cổ vũ mỗi trận đấu được ghi lại ở bảng sau (đơn vị: nghìn người):
d) Độ lệch chuẩn của mẫu số liệu ghép nhóm trên gần nhất với giá trị nào dưới đây?
A. 3,66.
B. 4,89.
C. 13,40.
D. 2,21.
Trong một giải bóng đá, số cổ động viên đến sân cổ vũ mỗi trận đấu được ghi lại ở bảng sau (đơn vị: nghìn người):

d) Độ lệch chuẩn của mẫu số liệu ghép nhóm trên gần nhất với giá trị nào dưới đây?
A. 3,66.
B. 4,89.
C. 13,40.
D. 2,21.
Quảng cáo
Trả lời:
Đáp án đúng là: D
Số trung bình của mẫu số liệu là:
\(\overline x \) = \(\frac{{9.5 + 11.12 + 13.19 + 15.21 + 17.7}}{{64}}\) = 13,40625.
Phương sai của mẫu số liệu trên là:
s2 = \(\frac{{{9^2}.5 + {{11}^2}.12 + {{13}^2}.19 + {{15}^2}.21 + {{17}^2}.7}}{{64}} - 13,{40625^2}\) ≈ 4,897.
Độ lệch chuẩn của mẫu số liệu là:
s ≈ \(\sqrt {4,897} \) ≈ 2,21.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) 2 |
b) 10 |
c) 113 |
d) 71 |
Dựa vào biểu đồ trên, ta có bảng sau:

Tần số của nhóm [6; 8) là 25.8% = 2 (nhân viên).
Khoảng biến thiên của mẫu số liệu ghép nhóm trên là: R = 16 – 6 = 10.
Ta có: \(\frac{n}{4} = \frac{{25}}{4} = 6,25\).
Tứ phân vị thứ nhất của mẫu số liệu gốc là x7 ∈ [8; 10).
Do đó, Q1 = 8 + \(\frac{{6,25 - 2}}{6}\left( {10 - 8} \right)\) = \(\frac{{113}}{{12}}\).
Ta có: \(\frac{{3n}}{4} = \frac{{3.25}}{4} = 18,75\).
Tứ phân vị thứ ba của mẫu số liệu gốc là x19 ∈ [12; 14).
Do đó, Q3 = 12 + \(\frac{{18,75 - \left( {2 + 6 + 10} \right)}}{4}\left( {14 - 12} \right)\) = \(\frac{{99}}{8}\).
Khoảng tứ phân vị của mẫu số liệu là:
∆Q = Q3 – Q1 = \(\frac{{99}}{8}\) − \(\frac{{113}}{{12}}\) = \(\frac{{71}}{{24}}\).
Lời giải
a) Đ |
b) S |
c) S |
d) Đ |
Cỡ mẫu là: n = 12 + 25 + 38 + 20 + 5 = 100.
Khoảng biến thiên của mẫu số liệu ghép nhóm trên là: R = 850 – 750 = 100 (g).
Ta có: \(\frac{n}{4} = \frac{{100}}{4} = 25\).
Tứ phân vị thứ nhất của mẫu số liệu gốc là x25 ∈ [770; 790).
Do đó, Q1 = 770 + \(\frac{{25 - 12}}{{25}}\left( {790 - 770} \right)\) = 780,4.
Ta có: \(\frac{{3n}}{4} = \frac{{3.100}}{4} = 75\).
Tứ phân vị thứ ba của mẫu số liệu gốc là x75 ∈ [790; 810).
Do đó, Q3 = 790 + \(\frac{{75 - \left( {12 + 25} \right)}}{{38}}\left( {810 - 790} \right)\) = 810.
Khoảng tứ phân vị của mẫu số liệu là:
∆Q = Q3 – Q1 = 810 – 780,4 = 29,6.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.