Câu hỏi:
19/09/2024 1,628
Một tài xế ô tô công nghệ ở Thành phố Hồ Chí Minh đã thống kê khoảng cách của một số chuyến xe chạy trong địa phận thành phố ở bảng sau:
c) Phương sai của mẫu số liệu ghép nhóm trên là
A. 104.
B. 21.
C. 10,2.
D. 441.
Một tài xế ô tô công nghệ ở Thành phố Hồ Chí Minh đã thống kê khoảng cách của một số chuyến xe chạy trong địa phận thành phố ở bảng sau:

c) Phương sai của mẫu số liệu ghép nhóm trên là
A. 104.
B. 21.
C. 10,2.
D. 441.
Quảng cáo
Trả lời:
Đáp án đúng là: A
Số trung bình của mẫu số liệu là:
\(\overline x \) = \(\frac{{5.28 + 15.32 + 25.66 + 35.20 + 45.4}}{{150}}\) = 21.
Phương sai của mẫu số liệu là:
s2 = \(\frac{{{5^2}.28 + {{15}^2}.32 + {{25}^2}.66 + {{35}^2}.20 + {{45}^2}.4}}{{150}} - {21^2}\) = 104.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: D
Số trung bình của mẫu số liệu là:
\(\overline x \) = \(\frac{{9.5 + 11.12 + 13.19 + 15.21 + 17.7}}{{64}}\) = 13,40625.
Phương sai của mẫu số liệu trên là:
s2 = \(\frac{{{9^2}.5 + {{11}^2}.12 + {{13}^2}.19 + {{15}^2}.21 + {{17}^2}.7}}{{64}} - 13,{40625^2}\) ≈ 4,897.
Độ lệch chuẩn của mẫu số liệu là:
s ≈ \(\sqrt {4,897} \) ≈ 2,21.
Lời giải
a) 2 |
b) 10 |
c) 113 |
d) 71 |
Dựa vào biểu đồ trên, ta có bảng sau:

Tần số của nhóm [6; 8) là 25.8% = 2 (nhân viên).
Khoảng biến thiên của mẫu số liệu ghép nhóm trên là: R = 16 – 6 = 10.
Ta có: \(\frac{n}{4} = \frac{{25}}{4} = 6,25\).
Tứ phân vị thứ nhất của mẫu số liệu gốc là x7 ∈ [8; 10).
Do đó, Q1 = 8 + \(\frac{{6,25 - 2}}{6}\left( {10 - 8} \right)\) = \(\frac{{113}}{{12}}\).
Ta có: \(\frac{{3n}}{4} = \frac{{3.25}}{4} = 18,75\).
Tứ phân vị thứ ba của mẫu số liệu gốc là x19 ∈ [12; 14).
Do đó, Q3 = 12 + \(\frac{{18,75 - \left( {2 + 6 + 10} \right)}}{4}\left( {14 - 12} \right)\) = \(\frac{{99}}{8}\).
Khoảng tứ phân vị của mẫu số liệu là:
∆Q = Q3 – Q1 = \(\frac{{99}}{8}\) − \(\frac{{113}}{{12}}\) = \(\frac{{71}}{{24}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.