Người ta đo độ ẩm không khí lúc 12 giờ trưa mỗi ngày tại một địa điểm trong tháng 4. Kết quả các lần đo được biểu diễn ở biểu đồ tần số tương đối ghép nhóm dưới đây.
a) Hãy lập bảng tần số ghép nhóm cho dữ liệu ở biểu đồ trên.
b) Hãy tính các số đặc trưng đo mức độ phân tán của mẫu số liệu ghép nhóm trên. (Làm tròn đến kết quả hàng phần trăm).
Người ta đo độ ẩm không khí lúc 12 giờ trưa mỗi ngày tại một địa điểm trong tháng 4. Kết quả các lần đo được biểu diễn ở biểu đồ tần số tương đối ghép nhóm dưới đây.

a) Hãy lập bảng tần số ghép nhóm cho dữ liệu ở biểu đồ trên.
b) Hãy tính các số đặc trưng đo mức độ phân tán của mẫu số liệu ghép nhóm trên. (Làm tròn đến kết quả hàng phần trăm).
Quảng cáo
Trả lời:
a) Ta có bảng tần số ghép nhóm sau:

b) Cỡ mẫu là: n = 6 + 6 + 9 + 6 + 3 = 30.
Khoảng biến thiên của mẫu số liệu ghép nhóm là: 80 – 60 = 20 (%).
Ta có: \(\frac{n}{4} = \frac{{30}}{4} = 7,5\).
Tứ phân vị thứ nhất của mẫu số liệu gốc là x8 ∈ [64; 68).
Do đó, Q1 = 64 + \(\frac{{7,5 - 6}}{6}\left( {68 - 64} \right)\) = 65.
Ta có: \(\frac{{3n}}{4} = \frac{{3.30}}{4} = 22,5\).
Tứ phân vị thứ ba của mẫu số liệu gốc là x23 ∈ [72; 76).
Do đó, Q3 = 72 + \(\frac{{22,5 - \left( {6 + 6 + 9} \right)}}{6}\left( {76 - 72} \right)\) = 73.
Khoảng tứ phân vị của mẫu số liệu là:
∆Q = Q3 – Q1 = 73 − 65 = 8.
Số trung bình của mẫu số liệu trên là:
\(\overline x = \frac{{62.6 + 66.6 + 70.9 + 74.6 + 78.3}}{{30}}\) = 69,2.
Phương sai của mẫu số liệu trên là:
s2 = \(\frac{{{{62}^2}.6 + {{66}^2}.6 + {{70}^2}.9 + {{74}^2}.6 + {{78}^2}.3}}{{30}} - 69,{2^2}\)= 24,96.
Độ lệch chuẩn của mẫu số liệu trên là:
s = \(\sqrt {24,96} \) ≈ 4,996.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: D
Số trung bình của mẫu số liệu là:
\(\overline x \) = \(\frac{{9.5 + 11.12 + 13.19 + 15.21 + 17.7}}{{64}}\) = 13,40625.
Phương sai của mẫu số liệu trên là:
s2 = \(\frac{{{9^2}.5 + {{11}^2}.12 + {{13}^2}.19 + {{15}^2}.21 + {{17}^2}.7}}{{64}} - 13,{40625^2}\) ≈ 4,897.
Độ lệch chuẩn của mẫu số liệu là:
s ≈ \(\sqrt {4,897} \) ≈ 2,21.
Lời giải
a) 2 |
b) 10 |
c) 113 |
d) 71 |
Dựa vào biểu đồ trên, ta có bảng sau:

Tần số của nhóm [6; 8) là 25.8% = 2 (nhân viên).
Khoảng biến thiên của mẫu số liệu ghép nhóm trên là: R = 16 – 6 = 10.
Ta có: \(\frac{n}{4} = \frac{{25}}{4} = 6,25\).
Tứ phân vị thứ nhất của mẫu số liệu gốc là x7 ∈ [8; 10).
Do đó, Q1 = 8 + \(\frac{{6,25 - 2}}{6}\left( {10 - 8} \right)\) = \(\frac{{113}}{{12}}\).
Ta có: \(\frac{{3n}}{4} = \frac{{3.25}}{4} = 18,75\).
Tứ phân vị thứ ba của mẫu số liệu gốc là x19 ∈ [12; 14).
Do đó, Q3 = 12 + \(\frac{{18,75 - \left( {2 + 6 + 10} \right)}}{4}\left( {14 - 12} \right)\) = \(\frac{{99}}{8}\).
Khoảng tứ phân vị của mẫu số liệu là:
∆Q = Q3 – Q1 = \(\frac{{99}}{8}\) − \(\frac{{113}}{{12}}\) = \(\frac{{71}}{{24}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.