Câu hỏi:
19/09/2024 372Người ta đo độ ẩm không khí lúc 12 giờ trưa mỗi ngày tại một địa điểm trong tháng 4. Kết quả các lần đo được biểu diễn ở biểu đồ tần số tương đối ghép nhóm dưới đây.
a) Hãy lập bảng tần số ghép nhóm cho dữ liệu ở biểu đồ trên.
b) Hãy tính các số đặc trưng đo mức độ phân tán của mẫu số liệu ghép nhóm trên. (Làm tròn đến kết quả hàng phần trăm).
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
a) Ta có bảng tần số ghép nhóm sau:
b) Cỡ mẫu là: n = 6 + 6 + 9 + 6 + 3 = 30.
Khoảng biến thiên của mẫu số liệu ghép nhóm là: 80 – 60 = 20 (%).
Ta có: \(\frac{n}{4} = \frac{{30}}{4} = 7,5\).
Tứ phân vị thứ nhất của mẫu số liệu gốc là x8 ∈ [64; 68).
Do đó, Q1 = 64 + \(\frac{{7,5 - 6}}{6}\left( {68 - 64} \right)\) = 65.
Ta có: \(\frac{{3n}}{4} = \frac{{3.30}}{4} = 22,5\).
Tứ phân vị thứ ba của mẫu số liệu gốc là x23 ∈ [72; 76).
Do đó, Q3 = 72 + \(\frac{{22,5 - \left( {6 + 6 + 9} \right)}}{6}\left( {76 - 72} \right)\) = 73.
Khoảng tứ phân vị của mẫu số liệu là:
∆Q = Q3 – Q1 = 73 − 65 = 8.
Số trung bình của mẫu số liệu trên là:
\(\overline x = \frac{{62.6 + 66.6 + 70.9 + 74.6 + 78.3}}{{30}}\) = 69,2.
Phương sai của mẫu số liệu trên là:
s2 = \(\frac{{{{62}^2}.6 + {{66}^2}.6 + {{70}^2}.9 + {{74}^2}.6 + {{78}^2}.3}}{{30}} - 69,{2^2}\)= 24,96.
Độ lệch chuẩn của mẫu số liệu trên là:
s = \(\sqrt {24,96} \) ≈ 4,996.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Nhiệt độ không khí trung bình hằng năm tại hai trạm quan trắc đạt ở Quy Nhơn và Cà Mau từ năm 2006 đến năm 2022 được ghi lại như sau:
a) Hãy chia dữ liệu trên thành 4 nhóm có độ dài bằng nhau với nhóm đầu tiên là [26,7; 27,1).
b) Hãy so sánh độ phân tán nhiệt độ không khí trung bình mỗi năm tại hai khu vực trên:
- theo khoảng biến thiên;
- theo khoảng tứ phân vị;
- theo phương sai.
Câu 2:
Biểu đồ dưới đây biểu diễn mẫu số liệu ghép nhóm mức lương nhân viên một công ty (đơn vị: triệu đồng).
Biết công ty có 25 nhân viên.
Sử dụng biểu đồ trên, viết số thích hợp vào chỗ chấm trong các câu sau:
a) Tần số của nhóm [6; 8) là…..
b) Khoảng biến thiên của mẫu số liệu ghép nhóm trên là…..triệu đồng.
c) Tứ phân vị thứ nhất của mẫu số liệu ghép nhóm trên là \(\frac{a}{{12}}\) với a bằng…..
d) Khoảng tứ phân vị của mẫu số liệu ghép nhóm trên là \(\frac{b}{{24}}\) với b bằng……
Câu 3:
Bảng dưới đây biểu diễn mẫu số liệu ghép nhóm về cân nặng một số quả dưa được lựa chọn ngẫu nhiên từ một lô hàng:
a) Số phần tử của mẫu (cỡ mẫu) là n = 100.
b) Khoảng biến thiên của mẫu số liệu ghép nhóm trên là 80 g.
c) Tứ phân vị thứ ba của mẫu số liệu ghép nhóm trên là Q3 = 830.
d) Khoảng tứ phân vị của mẫu số liệu ghép nhóm trên là ∆Q = 29,6.
Câu 4:
Trong một giải bóng đá, số cổ động viên đến sân cổ vũ mỗi trận đấu được ghi lại ở bảng sau (đơn vị: nghìn người):
d) Độ lệch chuẩn của mẫu số liệu ghép nhóm trên gần nhất với giá trị nào dưới đây?
A. 3,66.
B. 4,89.
C. 13,40.
D. 2,21.
Câu 5:
Trong một giải bóng đá, số cổ động viên đến sân cổ vũ mỗi trận đấu được ghi lại ở bảng sau (đơn vị: nghìn người):
c) Khoảng tứ phân vị của mẫu số liệu ghép nhóm trên gần nhất với giá trị nào dưới đây?
A. 2,48.
B. 4,93.
C. 3,31.
D. 5,11.
Câu 6:
Một cây xăng thống kê lượng xăng bán được mỗi tuần ở bảng sau (đơn vị: m3):
a) Xác định phương sai và độ lệch chuẩn của mẫu số liệu ghép nhóm trên (kết quả làm tròn đến hàng phần trăm).
b) Xác định khoảng biến thiên và khoảng tứ phân vị của mẫu số liệu ghép nhóm trên (kết quả làm tròn đến hàng phần trăm).
c) Biết rằng có 1 tuần cửa hàng bán được 49 m3 xăng. Giá trị đó có phải là giá trị ngoại lệ không?
về câu hỏi!