Câu hỏi:

22/09/2024 389

Cho \({\rm{acd}} \ne 0.\) Đồ thị hàm số \({\rm{y}} = {\rm{ax}} + {\rm{b}} + \frac{{\rm{c}}}{{{\rm{dx}} + {\rm{e}}}}({\rm{a}},{\rm{b}},{\rm{c}},{\rm{d}},{\rm{e}} \in \mathbb{R})\) có đường tiệm cận xiên là 

Đáp án chính xác

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn đáp án A

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số \(y = f(x)\) thoả mãn \(\mathop {\lim }\limits_{x \to - \infty } [f(x) - 5x + 7] = 0.\) Đường tiệm cận xiên của đồ thị hàm số \(y = f(x)\) là 

Xem đáp án » 22/09/2024 3,170

Câu 2:

Cho đường thẳng \({\rm{y}} = {\rm{ax}} + {\rm{b}}({\rm{a}},{\rm{b}} \in \mathbb{R})\) là đường tiệm cận xiên của đồ thị hàm số \({\rm{y}} = \sqrt {9{{\rm{x}}^2} + 1} .\) Tập hợp các giá trị của a là 

Xem đáp án » 22/09/2024 1,782

Câu 3:

Cho đường thẳng \({\rm{y}} = {\rm{ax}} + {\rm{b}}({\rm{a}},{\rm{b}} \in \mathbb{R})\) là đường tiệm cận xiên của đồ thị hàm số \({\rm{y}} = \frac{{ - 3{{\rm{x}}^2} + 5{\rm{x}} + 1}}{{2{\rm{x}} + 1}}.\) Giá trị của a là 

Xem đáp án » 22/09/2024 660

Câu 4:

Một trong bốn đường thẳng dưới đây là đường tiệm cận xiên của đồ thị hàm số ở Hình 2. Hỏi đường tiệm cận xiên của đồ thị hàm số đó là đường nào?

Một trong bốn đường thẳng dưới đây là đường tiệm cận xiên của đồ thị hàm số ở Hình 2. Hỏi đường tiệm cận xiên của đồ thị hàm số đó là đường nào?  (ảnh 1)

Xem đáp án » 22/09/2024 625

Câu 5:

Cho \({\rm{ac}} \ne 0,{\rm{ad}} - {\rm{bc}} \ne 0.\) Đồ thị hàm số \({\rm{y}} = \frac{{{\rm{ax}} + {\rm{b}}}}{{{\rm{cx}} + {\rm{d}}}}\) có đường tiệm cận đứng là 

Xem đáp án » 22/09/2024 610

Câu 6:

Đồ thị hàm số \(y = \frac{{x - 1}}{{x + 1}}\) có: 

Xem đáp án » 22/09/2024 565

Câu 7:

Cho hàm số \(y = f(x)\) có \(\mathop {\lim }\limits_{x \to 3} f(x) = + \infty ,\mathop {\lim }\limits_{x \to - \infty } f(x) = - 3.\) Phát biểu nào sau đây là đúng? 

Xem đáp án » 22/09/2024 545

Bình luận


Bình luận