Câu hỏi:
22/09/2024 312Cho hàm số \({\rm{y}} = {\rm{f}}({\rm{x}})\) thoả mãn hàm \({\rm{y}} = {{\rm{f}}^\prime }({\rm{x}})\) liên tục trên \(\mathbb{R}\) và cắt Ox tại đúng 3 điểm phân biệt có hoành độ \({\rm{a}},{\rm{b}},{\rm{c}}\) (hinh bên). Gọi \({{\rm{S}}_1}\) là diện tích của hình phẳng giới hạn bởi đổ thị hàm số \({\rm{y}} = {{\rm{f}}^\prime }({\rm{x}})\) và Ox tương ứng với \({\rm{x}} \in [{\rm{a}};{\rm{b}}],{{\rm{S}}_2}\) là diện tích của hình phẳng giới hạn bởi đồ thị hàm số \(y = {{\rm{f}}^\prime }({\rm{x}})\) và Ox tương ứng với \({\rm{x}} \in [{\rm{b}};{\rm{c}}].\)
a) \({{\rm{f}}^\prime }({\rm{x}}) \ge 0\quad \forall {\rm{x}} \in [{\rm{a}};{\rm{b}}],{{\rm{f}}^\prime }({\rm{x}}) \le 0\quad \forall {\rm{x}} \in [{\rm{b}};{\rm{c}}].\)
Quảng cáo
Trả lời:
a) \({{\rm{f}}^\prime }({\rm{x}}) \ge 0\forall {\rm{x}} \in [{\rm{a}};{\rm{b}}],{{\rm{f}}^\prime }({\rm{x}}) \le 0\forall {\rm{x}} \in [{\rm{b}};{\rm{c}}].\)
=> Đúng
Câu hỏi cùng đoạn
Câu 2:
b) Hàm số \({\rm{y}} = {\rm{f}}({\rm{x}})\) đồng biến trên [a;b] và nghịch biến trên [b; c].
Lời giải của GV VietJack
b) Hàm số \({\rm{y}} = {\rm{f}}({\rm{x}})\) đồng biến trên [a;b] và nghịch biến trên [b; c].
=> Sai
Câu 3:
c) \({S_1} = f(a) - f(b),{S_2} = f(a) - f(c).\)
Lời giải của GV VietJack
c) \({S_1} = \int_a^b {\left| {{f^\prime }(x)} \right|} dx = \int_a^b {{f^\prime }} (x)dx = f(b) - f(a).\)
\({S_2} = \int_b^c {\left| {{f^\prime }(x)} \right|} dx = \int_b^c - {f^\prime }(x)dx = f(b) - f(c).\)
=> Sai
Câu 4:
d) \(f(\) b) \( > f(c) > f(\) a \().\)
Lời giải của GV VietJack
d) \({\rm{f}}({\rm{x}})\) nghịch biến trên \([{\rm{b}};{\rm{c}}]\) nên \({\rm{f}}({\rm{b}}) > {\rm{f}}({\rm{c}}).\)
\({S_1} > {S_2}\) nên \(f(b) - f(a) > f(b) - f(c)\), suy ra \(f(c) > f(a).\)
Vậy \(f(b) > f(c) > f(a).\)
=> Đúng
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
a) Hoành độ giao điểm của đồ thị hàm số \({\rm{y}} = {\rm{f}}({\rm{x}})\) và Ox là nghiệm của phương trình \({\rm{f}}({\rm{x}}) = 0.\)
Câu 2:
a) Hoành độ giao điểm của đồ thị hàm số \({\rm{y}} = {\rm{f}}({\rm{x}})\) và Ox là nghiệm của phương trình \({\rm{f}}({\rm{x}}) = 0.\)
Câu 3:
a) \(f(x) = \frac{1}{{{x^{\frac{9}{7}}}}},x \in (0; + \infty ).\)
Câu 4:
a) Quãng đường \({\rm{s}}({\rm{t}})\) chất điểm đó chuyển động trên trục Ox từ thời điểm nào đó đến thời điểm t thoả mãn \({{\rm{s}}^\prime }({\rm{t}}) = {\rm{f}}({\rm{t}}).\)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 1)
30 Đề thi thử thpt quốc gia môn Toán có lời giải chi tiết mới nhất (Đề số 1)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 1)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 2)
45 bài tập Xác suất có lời giải
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 2)
50 bài tập Nguyên hàm, tích phân và ứng dụng có lời giải
CÂU TRẮC NGHIỆM ĐÚNG SAI
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận