Câu hỏi:
22/09/2024 286Cho hàm số \({\rm{y}} = {\rm{f}}({\rm{x}})\) thoả mãn hàm \({\rm{y}} = {{\rm{f}}^\prime }({\rm{x}})\) liên tục trên \(\mathbb{R}\) và cắt Ox tại đúng 3 điểm phân biệt có hoành độ \({\rm{a}},{\rm{b}},{\rm{c}}\) (hinh bên). Gọi \({{\rm{S}}_1}\) là diện tích của hình phẳng giới hạn bởi đổ thị hàm số \({\rm{y}} = {{\rm{f}}^\prime }({\rm{x}})\) và Ox tương ứng với \({\rm{x}} \in [{\rm{a}};{\rm{b}}],{{\rm{S}}_2}\) là diện tích của hình phẳng giới hạn bởi đồ thị hàm số \(y = {{\rm{f}}^\prime }({\rm{x}})\) và Ox tương ứng với \({\rm{x}} \in [{\rm{b}};{\rm{c}}].\)
a) \({{\rm{f}}^\prime }({\rm{x}}) \ge 0\quad \forall {\rm{x}} \in [{\rm{a}};{\rm{b}}],{{\rm{f}}^\prime }({\rm{x}}) \le 0\quad \forall {\rm{x}} \in [{\rm{b}};{\rm{c}}].\)
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).
Quảng cáo
Trả lời:
a) \({{\rm{f}}^\prime }({\rm{x}}) \ge 0\forall {\rm{x}} \in [{\rm{a}};{\rm{b}}],{{\rm{f}}^\prime }({\rm{x}}) \le 0\forall {\rm{x}} \in [{\rm{b}};{\rm{c}}].\)
=> Đúng
Câu hỏi cùng đoạn
Câu 2:
b) Hàm số \({\rm{y}} = {\rm{f}}({\rm{x}})\) đồng biến trên [a;b] và nghịch biến trên [b; c].
Lời giải của GV VietJack
b) Hàm số \({\rm{y}} = {\rm{f}}({\rm{x}})\) đồng biến trên [a;b] và nghịch biến trên [b; c].
=> Sai
Câu 3:
c) \({S_1} = f(a) - f(b),{S_2} = f(a) - f(c).\)
Lời giải của GV VietJack
c) \({S_1} = \int_a^b {\left| {{f^\prime }(x)} \right|} dx = \int_a^b {{f^\prime }} (x)dx = f(b) - f(a).\)
\({S_2} = \int_b^c {\left| {{f^\prime }(x)} \right|} dx = \int_b^c - {f^\prime }(x)dx = f(b) - f(c).\)
=> Sai
Câu 4:
d) \(f(\) b) \( > f(c) > f(\) a \().\)
Lời giải của GV VietJack
d) \({\rm{f}}({\rm{x}})\) nghịch biến trên \([{\rm{b}};{\rm{c}}]\) nên \({\rm{f}}({\rm{b}}) > {\rm{f}}({\rm{c}}).\)
\({S_1} > {S_2}\) nên \(f(b) - f(a) > f(b) - f(c)\), suy ra \(f(c) > f(a).\)
Vậy \(f(b) > f(c) > f(a).\)
=> Đúng
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
a) Hoành độ giao điểm của đồ thị hàm số \({\rm{y}} = {\rm{f}}({\rm{x}})\) và Ox là nghiệm của phương trình \({\rm{f}}({\rm{x}}) = 0.\)
Câu 2:
a) Hoành độ giao điểm của đồ thị hàm số \({\rm{y}} = {\rm{f}}({\rm{x}})\) và Ox là nghiệm của phương trình \({\rm{f}}({\rm{x}}) = 0.\)
Câu 3:
a) \(f(x) = \frac{1}{{{x^{\frac{9}{7}}}}},x \in (0; + \infty ).\)
Câu 4:
a) Quãng đường \({\rm{s}}({\rm{t}})\) chất điểm đó chuyển động trên trục Ox từ thời điểm nào đó đến thời điểm t thoả mãn \({{\rm{s}}^\prime }({\rm{t}}) = {\rm{f}}({\rm{t}}).\)
30 Đề thi thử thpt quốc gia môn Toán có lời giải chi tiết mới nhất (Đề số 1)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 1)
50 bài tập Nguyên hàm, tích phân và ứng dụng có lời giải
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 1)
50 bài tập Hình học không gian có lời giải
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 2)
45 bài tập Xác suất có lời giải
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 2)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận