Câu hỏi:

22/09/2024 306

Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.

Cho hàm số \({\rm{y}} = {\rm{f}}({\rm{x}})\) thoả mãn hàm \({\rm{y}} = {{\rm{f}}^\prime }({\rm{x}})\) liên tục trên \(\mathbb{R}\) và cắt Ox tại đúng 3 điểm phân biệt có hoành độ \({\rm{a}},{\rm{b}},{\rm{c}}\) (hinh bên). Gọi \({{\rm{S}}_1}\) là diện tích của hình phẳng giới hạn bởi đổ thị hàm số \({\rm{y}} = {{\rm{f}}^\prime }({\rm{x}})\) và Ox tương ứng với \({\rm{x}} \in [{\rm{a}};{\rm{b}}],{{\rm{S}}_2}\) là diện tích của hình phẳng giới hạn bởi đồ thị hàm số \(y = {{\rm{f}}^\prime }({\rm{x}})\) và Ox tương ng với \({\rm{x}} \in [{\rm{b}};{\rm{c}}].\)

a) \({{\rm{f}}^\prime }({\rm{x}}) \ge 0\quad \forall {\rm{x}} \in [{\rm{a}};{\rm{b}}],{{\rm{f}}^\prime }({\rm{x}}) \le 0\quad \forall {\rm{x}} \in [{\rm{b}};{\rm{c}}].\)

Hot: Hot: 500+ Đề thi thử tốt nghiệp THPT Quốc gia Toán, Văn, Anh, Sử, Địa...., ĐGNL các trường ĐH Quốc Gia Hà Nội, Tp. Hồ Chi Minh file word có đáp án (form 2025).

Tải ngay

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) \({{\rm{f}}^\prime }({\rm{x}}) \ge 0\forall {\rm{x}} \in [{\rm{a}};{\rm{b}}],{{\rm{f}}^\prime }({\rm{x}}) \le 0\forall {\rm{x}} \in [{\rm{b}};{\rm{c}}].\)

=> Đúng

Câu hỏi cùng đoạn

Câu 2:

b) Hàm số \({\rm{y}} = {\rm{f}}({\rm{x}})\) đồng biến trên [a;b] và nghịch biến trên [b; c].

Xem lời giải

verified Lời giải của GV VietJack

b) Hàm số \({\rm{y}} = {\rm{f}}({\rm{x}})\) đồng biến trên [a;b] và nghịch biến trên [b; c].

=> Sai

Câu 3:

c) \({S_1} = f(a) - f(b),{S_2} = f(a) - f(c).\)

Xem lời giải

verified Lời giải của GV VietJack

c) \({S_1} = \int_a^b {\left| {{f^\prime }(x)} \right|} dx = \int_a^b {{f^\prime }} (x)dx = f(b) - f(a).\)

\({S_2} = \int_b^c {\left| {{f^\prime }(x)} \right|} dx = \int_b^c  -  {f^\prime }(x)dx = f(b) - f(c).\)

=> Sai

Câu 4:

d) \(f(\) b) \( > f(c) > f(\) a \().\)

Xem lời giải

verified Lời giải của GV VietJack

d) \({\rm{f}}({\rm{x}})\) nghịch biến trên \([{\rm{b}};{\rm{c}}]\) nên \({\rm{f}}({\rm{b}}) > {\rm{f}}({\rm{c}}).\)

\({S_1} > {S_2}\) nên \(f(b) - f(a) > f(b) - f(c)\), suy ra \(f(c) > f(a).\)

Vậy \(f(b) > f(c) > f(a).\)

=> Đúng

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

a) Hoành độ giao điểm của đồ thị hàm số \({\rm{y}} = {\rm{f}}({\rm{x}})\) và Ox là nghiệm của phương trình \({\rm{f}}({\rm{x}}) = 0.\)

 

Xem đáp án » 22/09/2024 917

Câu 2:

a) Hoành độ giao điểm của đồ thị hàm số \({\rm{y}} = {\rm{f}}({\rm{x}})\) và Ox là nghiệm của phương trình \({\rm{f}}({\rm{x}}) = 0.\)

Xem đáp án » 22/09/2024 684

Câu 3:

a) \(f(x) = \frac{1}{{{x^{\frac{9}{7}}}}},x \in (0; + \infty ).\)

Xem đáp án » 22/09/2024 605

Câu 4:

a) Quãng đường \({\rm{s}}({\rm{t}})\) chất điểm đó chuyển động trên trục Ox từ thời điểm nào đó đến thời điểm t thoả mãn \({{\rm{s}}^\prime }({\rm{t}}) = {\rm{f}}({\rm{t}}).\)

Xem đáp án » 22/09/2024 530

Câu 5:

a) \(f(x) = 2 \cdot {\left( {\frac{1}{8}} \right)^x}.\)

Xem đáp án » 22/09/2024 287

Câu 6:

a) \(f(x) = 4{x^2} - 4 + \frac{1}{{{x^2}}},x \ne 0.\)

Xem đáp án » 22/09/2024 218
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua