Câu hỏi:

24/09/2024 1,749 Lưu

Nền nhà tầng một của một hội trường có độ cao 1 m so với mặt đất. Từ nền nhà tầng 1 lên nền nhà tầng 2 có một cầu thang 21 bậc, độ cao của các bậc so với mặt đất theo thứ tự lập thành một cấp số cộng \(\left( {{u_n}} \right)\) có 21 số hạng: \({{\rm{u}}_1} = 1,\;{\rm{d}} = 0,16\) (đơn vị là mét). Độ cao của bậc thứ 8 so với mặt đất là bao nhiêu mét?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp số: 2,12.

Độ cao của bậc thứ 8 so với mặt đất là \({\rm{u}}8 = {\rm{u}}1 + 7\;{\rm{d}} = 1 + 7 \cdot 0,16 = 2,12(\;{\rm{m}}).\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Chọn đáp án A

Lời giải

Đáp số: \({\bf{0}},{\bf{13}}.\)

Chọn ngẫu nhiên một email. Gọi A là biến cố email đó là thư quảng cáo và B là biến cố E -mail Filter chuyển email đó vào thư mục Spam.

Ta có \({\rm{P}}({\rm{B}}\mid {\rm{A}}) = 0,9;{\rm{P}}({\rm{B}}\mid \overline {\rm{A}} ) = 0,05;{\rm{P}}({\rm{A}}\mid {\rm{B}}) = 0,72.\)

Áp dụng công thức Bayes, ta có: \({\rm{P}}({\rm{A}}\mid {\rm{B}}) = \frac{{{\rm{P}}({\rm{B}}\mid {\rm{A}}){\rm{P}}({\rm{A}})}}{{{\rm{P}}({\rm{B}}\mid {\rm{A}}){\rm{P}}({\rm{A}}) + {\rm{P}}({\rm{B}}\mid \overline {\rm{A}} ){\rm{P}}(\overline {\rm{A}} )}}.\)

Đặt \(P(A) = p \in [0;1]\), ta có:

\(0,72 = \frac{{0,9p}}{{0,9p + 0,05(1 - {\rm{p}})}} \Leftrightarrow 0,8(0,85{\rm{p}} + 0,05) = {\rm{p}}.\)

Giải phương trình trên ta được \({\rm{p}} = 0,125.\)

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP