Câu hỏi:

24/09/2024 664

Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
Trong không gian với hệ tọa độ Oxyz, cho hai điểm \({\rm{A}}(1; - 3;0)\) và \({\rm{B}}( - 1;1;2).\)
 

a) Toạ độ trung điểm I của đoạn thẳng AB là \((0; - 1;1).\)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đúng

Câu hỏi cùng đoạn

Câu 2:

b) \(\overrightarrow {{\rm{AB}}} = ( - 2;4;2).\)

Xem lời giải

verified Lời giải của GV VietJack

Đúng

Câu 3:

c) Bán kính đường tròn đường kính AB bằng \(\sqrt {32} .\)

Xem lời giải

verified Lời giải của GV VietJack

Sai

Câu 4:

d) Phương trình đường tròn đường kính AB là \({{\rm{x}}^2} + {({\rm{y}} + 1)^2} + {({\rm{z}} - 1)^2} = 32.\)

Xem lời giải

verified Lời giải của GV VietJack

Sai

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp số: 7,5.

Giả sử hình hộp chữ nhật có chiều rộng của đáy là x, chiều dài của đáy là 3 x, chiều cao là y (đơn vị \({\rm{m}},{\rm{x}} > 0,{\rm{y}} > 0\) ).

Ta có: \(3x \cdot x + 2 \cdot x \cdot y + 2 \cdot 3x \cdot y = 20\), tức là \(3{x^2} + 8xy = 20,y = \frac{{20 - 3{x^2}}}{{8x}}.\)

Thể tích của bể cá là \(V = 3{\rm{x}} \cdot {\rm{x}} \cdot {\rm{y}} = 3{\rm{x}} \cdot {\rm{x}} \cdot \frac{{20 - 3{{\rm{x}}^2}}}{{8{\rm{x}}}} = \frac{3}{8}\left( { - 3{{\rm{x}}^3} + 20{\rm{x}}} \right).\)

\(f(x) = \frac{3}{8}\left( { - 3{x^3} + 20x} \right),0 < x < \sqrt {\frac{{20}}{3}} .\)

\({f^\prime }(x) = \frac{3}{8}\left( { - 9{x^2} + 20} \right),{f^\prime }(x) = 0 \Leftrightarrow x = \frac{{2\sqrt 5 }}{3}.\)

Lập bảng biến thiên của hàm số trên \(\left( {0;\sqrt {\frac{{20}}{3}} } \right)\), thể tích có giá trị lớn nhất là \(\frac{3}{8}\left[ { - 3 \cdot {{\left( {\frac{{2\sqrt 5 }}{3}} \right)}^3} + 20 \cdot \left( {\frac{{2\sqrt 5 }}{3}} \right)} \right] = \frac{{10\sqrt 5 }}{3} \approx 7,5\left( {\;{{\rm{m}}^3}} \right).\)

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP