Câu hỏi:
01/10/2024 39,822
Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình dưới đây.
Tâm đối xứng của đồ thị hàm số có tọa độ là
Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình dưới đây.

Tâm đối xứng của đồ thị hàm số có tọa độ là
Câu hỏi trong đề: Đề thi giữa kì 1 Toán 12 Chân Trời Sáng Tạo có đáp án !!
Quảng cáo
Trả lời:
Đáp án đúng là: A
Đồ thị hàm số đã cho nhận giao điểm của hai đường tiệm cận làm tâm đối xứng.
Dựa vào đồ thị, ta thấy, giao điểm này có tọa độ là \(\left( {2;\,2} \right)\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Đ, b) S, c) Đ, d) Đ.
Hướng dẫn giải
Xét hàm số \(y = f\left( x \right) = \frac{{{x^2} + 4x + 7}}{{x + 1}} = x + 3 + \frac{4}{{x + 1}}\).
– Tập xác định của hàm số là \(\mathbb{R}\backslash \left\{ { - 1} \right\}\).
– Ta có \(y' = \frac{{{x^2} + 2x - 3}}{{{{\left( {x + 1} \right)}^2}}}\); \(y' = 0\) khi \(x = - 3\) hoặc \(x = 1\).
Bảng biến thiên của hàm số:

– Hàm số đồng biến trên từng khoảng \(\left( { - \infty ; - 3} \right)\) và \(\left( {1; + \infty } \right)\); nghịch biến trên từng khoảng \(\left( { - 3; - 1} \right)\) và \(\left( { - 1;1} \right)\). Do đó, ý a) đúng.
– Hàm số đã cho đạt cực tiểu tại \(x = 1\), \({y_{CT}} = 6\); đạt cực đại tại . Do đó, ý b) sai.
– Tiệm cận: Đồ thị hàm số đã cho có tiệm cận đứng là đường thẳng \(x = - 1\), tiệm cận xiên là đường thẳng \(y = x + 3\). Do đó, ý c) đúng.
– Giả sử đồ thị hàm số \(y = f\left( x \right)\) là \(\left( C \right)\).
Điểm \(M\left( {x;\,y} \right) \in \left( C \right)\) có tọa độ nguyên khi \(\left\{ \begin{array}{l}x \in \mathbb{Z}\backslash \left\{ { - 1} \right\}\\y \in \mathbb{Z}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \in \mathbb{Z}\backslash \left\{ { - 1} \right\}\\4\,\, \vdots \,\,\left( {x + 1} \right)\end{array} \right.\).
Vì Ư(4) = \[\left\{ { \pm 1;\, \pm 2;\, \pm 4} \right\}\] nên ta có bảng sau:
\(x + 1\) |
\( - 4\) |
\( - 2\) |
\( - 1\) |
\(1\) |
\(2\) |
\(4\) |
\(x\) |
\( - 5\) (tm) |
\( - 3\) (tm) |
\( - 2\) (tm) |
\(0\) (tm) |
\(1\) (tm) |
\(3\) (tm) |
Vậy đồ thị hàm số \(y = f\left( x \right)\) đi qua 6 điểm có tọa độ nguyên nên ý d) đúng.
Lời giải
Đáp án đúng là: B
Dựa vào đồ thị hàm số ta thấy, đồ thị hàm số có tiệm cận đứng là \(x = 1\) và tiệm cận ngang là \(y = 1\), do vậy ta loại hai đáp án là C và D.
Xét đáp án A có \(y = \frac{{x + 1}}{{x - 1}} \Rightarrow y' = \frac{{ - 2}}{{{{\left( {x - 1} \right)}^2}}} < 0\) nên hàm số nghịch biến trên các khoảng \(\left( { - \infty ;1} \right)\) và \(\left( {1; + \infty } \right)\), do đó đồ thị hàm số này đi xuống từ trái sang phải trên các khoảng này, vậy loại đáp án A và chọn đáp án B.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.