Câu hỏi:

01/10/2024 4,076

Cho hình hộp \(ABCD.A'B'C'D'\) có tất cả các cạnh đều bằng \(a\)\(\widehat {ABC} = \widehat {A'AB} = \widehat {A'AD} = 60^\circ \). Khi đó:  

Cho hình hộp ABCD.A'B'C'D' có tất cả các cạnh đều  (ảnh 1)

a) \(\left| {\overrightarrow {AB} } \right| = \left| {\overrightarrow {BC} } \right| = a\).

b) \(\overrightarrow {AA'} \cdot \overrightarrow {AB} = {a^2}\).

c) \(\left| {\overrightarrow {D'A'} + \overrightarrow {D'C'} } \right| = a\sqrt 3 \).

d) \(\overrightarrow {AA'} \cdot \overrightarrow {AC} = {a^2}\).

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).

Tổng ôn Toán-lý hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Đ,           b) S,            c) Đ,            d) Đ.

Hướng dẫn giải

– Theo bài ra, ta có \(AB = BC = a\) nên \(\left| {\overrightarrow {AB} } \right| = \left| {\overrightarrow {BC} } \right| = a\). Do đó, ý a) đúng.

– Ta có: \(\overrightarrow {AA'} \cdot \overrightarrow {AB} = \left| {\overrightarrow {AA'} } \right| \cdot \left| {\overrightarrow {AB} } \right| \cdot \cos \left( {\overrightarrow {AA'} ,\,\overrightarrow {AB} } \right)\)

                   \( = \left| {\overrightarrow {AA'} } \right| \cdot \left| {\overrightarrow {AB} } \right| \cdot \cos \widehat {A'AB} = a \cdot a \cdot \cos 60^\circ = \frac{{{a^2}}}{2}\).

Do đó, ý b) sai.

– Ta có \(\widehat {DAB} = 180^\circ - \widehat {ABC} = 120^\circ \).

Áp dụng định lí côsin trong tam giác \(ABD\), ta có:

\(DB = \sqrt {A{D^2} + A{B^2} - 2AD \cdot AB \cdot \cos \widehat {DAB}} = a\sqrt 3 \).

Theo quy tắc hình bình hành, ta có \(\overrightarrow {D'A'} + \overrightarrow {D'C'} = \overrightarrow {D'B'} = \overrightarrow {DB} \).

Suy ra \(\left| {\overrightarrow {D'A'} + \overrightarrow {D'C'} } \right| = \left| {\overrightarrow {DB} } \right| = DB = a\sqrt 3 \). Vậy ý c) đúng.

– Ta có: \(\overrightarrow {AA'} \cdot \overrightarrow {AD} = \left| {\overrightarrow {AA'} } \right| \cdot \left| {\overrightarrow {AD} } \right| \cdot \cos \left( {\overrightarrow {AA'} ,\overrightarrow {AD} } \right)\)

                   \( = \left| {\overrightarrow {AA'} } \right| \cdot \left| {\overrightarrow {AD} } \right| \cdot \cos \widehat {A'AD} = a \cdot a \cdot \cos 60^\circ = \frac{{{a^2}}}{2}\).

Khi đó, \(\overrightarrow {AA'} \cdot \overrightarrow {AC} = \overrightarrow {AA'} \cdot \left( {\overrightarrow {AB} + \overrightarrow {AD} } \right) = \overrightarrow {AA'} \cdot \overrightarrow {AB} + \overrightarrow {AA'} \cdot \overrightarrow {AD} = \frac{{{a^2}}}{2} + \frac{{{a^2}}}{2} = {a^2}\).

Vậy ý d) đúng.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình dưới đây.

Tâm đối xứng của đồ thị hàm số có tọa độ là  (ảnh 1)

Tâm đối xứng của đồ thị hàm số có tọa độ là

Xem đáp án » 01/10/2024 25,644

Câu 2:

Cho hàm số \(y = f\left( x \right) = \frac{{{x^2} + 4x + 7}}{{x + 1}}\).

a) Hàm số đã cho nghịch biến trên từng khoảng \(\left( { - 3; - 1} \right)\)\(\left( { - 1;1} \right)\).

b) Giá trị cực tiểu của hàm số đã cho là \( - 2\).

c) Đồ thị hàm số đã cho có tiệm cận đứng là đường thẳng \(x = - 1\), tiệm cận xiên là đường thẳng \(y = x + 3\).

d) Đồ thị hàm số \(y = f\left( x \right)\) đi qua 6 điểm có tọa độ nguyên.

Xem đáp án » 01/10/2024 8,726

Câu 3:

Đường cong trong hình dưới là đồ thị của hàm số nào trong bốn hàm số sau đây?

Đường cong trong hình dưới là đồ thị của hàm số  (ảnh 1)

Xem đáp án » 01/10/2024 6,065

Câu 4:

Cho hàm số \(y = x - \frac{1}{x}\). Phát biểu nào sau đây là sai?

Xem đáp án » 01/10/2024 3,147

Câu 5:

Cho hình lăng trụ tam giác \(ABC.A'B'C'\) (tham khảo hình vẽ). Khi đó:

Cho hình lăng trụ tam giác ABC.A'B'C' tham khảo (ảnh 1)

a) \(\overrightarrow {BA} + \overrightarrow {A'C'} = \overrightarrow {BC} \).

b) \(\overrightarrow {AB} + \overrightarrow {AA'} + \overrightarrow {B'C'} = \overrightarrow {AC'} \).

c) \(\left( {\overrightarrow {BC} ,\,\overrightarrow {AA'} } \right) = \left( {\overrightarrow {BC} ,\,\overrightarrow {BB'} } \right) = \left( {\overrightarrow {BC} ,\,\overrightarrow {CC'} } \right)\).

d) \(\overrightarrow {B'C} \cdot \overrightarrow {BA} = \left| {\overrightarrow {B'C} } \right| \cdot \left| {\overrightarrow {BA} } \right| \cdot \cos \widehat {A'CB'}\).

Xem đáp án » 01/10/2024 2,990

Câu 6:

Cho hàm số \[y = f\left( x \right)\] có đồ thị như hình dưới đây.

Cho hàm số y = f(x) có đồ thị như hình (ảnh 1)

Phát biểu nào sau đây là đúng?

Xem đáp án » 01/10/2024 2,426