Câu hỏi:

01/10/2024 485

Gọi \(M\)\(m\) lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số \[y = 2{\cos ^3}x - \frac{9}{2}{\cos ^2}x + 3\cos x + \frac{1}{2}\]. Giá trị của biểu thức \(3M - 2m\) bằng bao nhiêu?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đặt \[t = \cos x \in \left[ { - 1;\,\,1} \right]\], khi đó \(y = f\left( t \right) = 2{t^3} - \frac{9}{2}{t^2} + 3t + \frac{1}{2}\).

Xét hàm số \[f\left( t \right) = 2{t^3} - \frac{9}{2}{t^2} + 3t + \frac{1}{2}\] với \(t \in \left[ { - 1;\,1} \right]\).

Ta có: \[f'\left( t \right) = 8{t^2} - 9t + 3 = 8{\left( {t - \frac{9}{{16}}} \right)^2} + \frac{{15}}{{32}} > 0\,\,\forall t\].

Do đó, hàm số \[f\left( t \right)\] đồng biến trên \(\left[ { - 1;\,1} \right]\).

Suy ra \(M = \max y = \mathop {\max }\limits_{\left[ { - 1;\,1} \right]} f\left( t \right) = f\left( 1 \right) = 1\); \(m = \min y = \mathop {\min }\limits_{\left[ { - 1;\,1} \right]} f\left( t \right) = f\left( { - 1} \right) = - 9\).

Vậy \(3M - 2m = 3 \cdot 1 - 2 \cdot \left( { - 9} \right) = 21\).

Đáp số: \(21\).

Luân \/

Luân \/

Đạo hàm sai rồi🥲

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án đúng là: A

Đồ thị hàm số đã cho nhận giao điểm của hai đường tiệm cận làm tâm đối xứng.

Dựa vào đồ thị, ta thấy, giao điểm này có tọa độ là \(\left( {2;\,2} \right)\).

Lời giải

a) Đ,           b) S,            c) Đ,            d) Đ.

Hướng dẫn giải

Xét hàm số \(y = f\left( x \right) = \frac{{{x^2} + 4x + 7}}{{x + 1}} = x + 3 + \frac{4}{{x + 1}}\).

– Tập xác định của hàm số là \(\mathbb{R}\backslash \left\{ { - 1} \right\}\).

– Ta có \(y' = \frac{{{x^2} + 2x - 3}}{{{{\left( {x + 1} \right)}^2}}}\); \(y' = 0\) khi \(x = - 3\) hoặc \(x = 1\).

Bảng biến thiên của hàm số:

Cho hàm số y = f(x) = (x^2 + 4x + 7) / (x + 1) (ảnh 1)

– Hàm số đồng biến trên từng khoảng \(\left( { - \infty ; - 3} \right)\)\(\left( {1; + \infty } \right)\); nghịch biến trên từng khoảng \(\left( { - 3; - 1} \right)\)\(\left( { - 1;1} \right)\). Do đó, ý a) đúng.

– Hàm số đã cho đạt cực tiểu tại \(x = 1\), \({y_{CT}} = 6\); đạt cực đại tại . Do đó, ý b) sai.

– Tiệm cận: Đồ thị hàm số đã cho có tiệm cận đứng là đường thẳng \(x = - 1\), tiệm cận xiên là đường thẳng \(y = x + 3\). Do đó, ý c) đúng.

– Giả sử đồ thị hàm số \(y = f\left( x \right)\)\(\left( C \right)\).

Điểm \(M\left( {x;\,y} \right) \in \left( C \right)\) có tọa độ nguyên khi \(\left\{ \begin{array}{l}x \in \mathbb{Z}\backslash \left\{ { - 1} \right\}\\y \in \mathbb{Z}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \in \mathbb{Z}\backslash \left\{ { - 1} \right\}\\4\,\, \vdots \,\,\left( {x + 1} \right)\end{array} \right.\).

Vì Ư(4) = \[\left\{ { \pm 1;\, \pm 2;\, \pm 4} \right\}\] nên ta có bảng sau:

\(x + 1\)

\( - 4\)

\( - 2\)

\( - 1\)

\(1\)

\(2\)

\(4\)

\(x\)

\( - 5\) (tm)

\( - 3\) (tm)

\( - 2\) (tm)

\(0\) (tm)

\(1\) (tm)

\(3\) (tm)

 

Vậy đồ thị hàm số \(y = f\left( x \right)\) đi qua 6 điểm có tọa độ nguyên nên ý d) đúng.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP