Câu hỏi:

01/10/2024 853

PHẦN I. Câu trắc nghiệm nhiều phương án lựa chọn. Thí sinh trả lời từ câu 1 đến câu 12. Mỗi câu hỏi thí sinh chỉ chọn một phương án.

Cho hàm số  có đồ thị như hình dưới đây.

Hàm số đã cho đồng biến trên khoảng nào trong các  (ảnh 1)

Hàm số đã cho đồng biến trên khoảng nào trong các khoảng sau đây?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B

Quan sát hình vẽ, ta thấy trên khoảng \[\left( { - 1;\,\,1} \right)\], đồ thị hàm số \[y = f\left( x \right)\] đi lên từ trái qua phải nên hàm số đã cho đồng biến trên khoảng này.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ngân có một tấm giấy màu có dạng nửa  (ảnh 2)

Gọi \(x\,\,\left( {{\rm{cm}}} \right)\) là độ dài một cạnh của tấm giấy hình chữ nhật được cắt ra (cạnh thuộc đường kính) và \(y\,\,\left( {{\rm{cm}}} \right)\) là độ dài cạnh còn lại \((0 < x < 16,\,\,0 < y < 8)\). Ta có:

\({\left( {\frac{x}{2}} \right)^2} + {y^2} = {8^2} \Leftrightarrow {y^2} = \frac{1}{4}\left( {256 - {x^2}} \right) \Leftrightarrow y = \frac{1}{2}\sqrt {256 - {x^2}} \).

Diện tích của tấm giấy hình chữ nhật đó là:

\(S = xy = x \cdot \frac{1}{2}\sqrt {256 - {x^2}} = \frac{1}{2}\sqrt {{x^2}\left( {256 - {x^2}} \right)} \) (cm2).

Đặt \(f\left( x \right) = {x^2}\left( {256 - {x^2}} \right)\) với \(0 < x < 16\), có \(f'\left( x \right) = 512x - 4{x^3}\) nên \(f'\left( x \right) = 0\) khi \(x = 8\sqrt 2 \).

Vậy giá trị lớn nhất của \(S\) bằng \(\frac{1}{2}\sqrt {f\left( {8\sqrt 2 } \right)} = 64\,\,\,\left( {{\rm{c}}{{\rm{m}}^2}} \right)\).

Đáp số: \(64\).

Lời giải

Gọi độ dài cạnh đáy của thùng chứa gạo là \(x\) (m, \(x > 0\)) và chiều cao của thùng chứa gạo là \(h\) (m, \(h > 0\)).

Thể tích của thùng là \(V = {x^2} \cdot h = 2\), suy ra \(h = \frac{2}{{{x^2}}}\) (m).

Khi đó, diện tích tôn cần sử dụng là: \[S = {x^2} + 4xh = {x^2} + 4x \cdot \frac{2}{{{x^2}}} = {x^2} + \frac{8}{x}\] (m2).

Chi phí để mua nguyên liệu là: \(T = 100{x^2} + 50 \cdot \frac{8}{x} = 100{x^2} + \frac{{400}}{x}\) (nghìn đồng).

Xét hàm số \(T\left( x \right) = 100{x^2} + \frac{{400}}{x}\) với \(x \in \left( {0; + \infty } \right)\).

Ta có: \(T'\left( x \right) = 200x - \frac{{400}}{{{x^2}}} = \frac{{200{x^3} - 400}}{{{x^2}}}\); \(T'\left( x \right) = 0\) khi \(x = \sqrt[3]{2}\).

Bảng biến thiên của hàm số \(T\left( x \right)\) trên khoảng \(\left( {0; + \infty } \right)\) như sau:

Ông Hùng cần đóng một thùng chứa gạo có dạng (ảnh 1)

Từ bảng biến thiên ta thấy, \(T\left( x \right)\) đạt giá trị nhỏ nhất trên \(\left( {0; + \infty } \right)\) khi \(x = \sqrt[3]{2}\).

Vậy ông Hùng cần đóng thùng chứa gạo với cạnh đáy bằng \(\sqrt[3]{2} \approx 1,3\) m để chi phí mua nguyên liệu là nhỏ nhất.

Đáp số: \(1,3\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay