Câu hỏi:

01/10/2024 514 Lưu

Quan sát bảng biến thiên dưới đây và cho biết bảng biến thiên đó là của hàm số nào?

Quan sát bảng biến thiên dưới đây và cho biết (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: A

Từ bảng biến thiên, ta thấy đồ thị hàm số có tiệm cận đứng là \(x = - 2\) và tiệm cận ngang là \(y = 2\) nên ta loại phương án C và D.

Mặt khác, hàm số đã cho nghịch biến trên các khoảng xác định của nó.

Xét hàm số \(y = \frac{{2x - 3}}{{x + 2}}\), ta có \(y' = \frac{7}{{{{\left( {x + 2} \right)}^2}}} > 0\) nên hàm số đồng biến trên các khoảng xác định của nó, do đó ta loại phương án B.

Xét hàm số \(y = \frac{{2x + 5}}{{x + 2}}\), ta có \(y' = \frac{{ - 1}}{{{{\left( {x + 2} \right)}^2}}} < 0\) nên hàm số nghịch biến trên các khoảng xác định của nó, do đó ta chọn phương án A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ngân có một tấm giấy màu có dạng nửa  (ảnh 2)

Gọi \(x\,\,\left( {{\rm{cm}}} \right)\) là độ dài một cạnh của tấm giấy hình chữ nhật được cắt ra (cạnh thuộc đường kính) và \(y\,\,\left( {{\rm{cm}}} \right)\) là độ dài cạnh còn lại \((0 < x < 16,\,\,0 < y < 8)\). Ta có:

\({\left( {\frac{x}{2}} \right)^2} + {y^2} = {8^2} \Leftrightarrow {y^2} = \frac{1}{4}\left( {256 - {x^2}} \right) \Leftrightarrow y = \frac{1}{2}\sqrt {256 - {x^2}} \).

Diện tích của tấm giấy hình chữ nhật đó là:

\(S = xy = x \cdot \frac{1}{2}\sqrt {256 - {x^2}} = \frac{1}{2}\sqrt {{x^2}\left( {256 - {x^2}} \right)} \) (cm2).

Đặt \(f\left( x \right) = {x^2}\left( {256 - {x^2}} \right)\) với \(0 < x < 16\), có \(f'\left( x \right) = 512x - 4{x^3}\) nên \(f'\left( x \right) = 0\) khi \(x = 8\sqrt 2 \).

Vậy giá trị lớn nhất của \(S\) bằng \(\frac{1}{2}\sqrt {f\left( {8\sqrt 2 } \right)} = 64\,\,\,\left( {{\rm{c}}{{\rm{m}}^2}} \right)\).

Đáp số: \(64\).

Lời giải

Gọi độ dài cạnh đáy của thùng chứa gạo là \(x\) (m, \(x > 0\)) và chiều cao của thùng chứa gạo là \(h\) (m, \(h > 0\)).

Thể tích của thùng là \(V = {x^2} \cdot h = 2\), suy ra \(h = \frac{2}{{{x^2}}}\) (m).

Khi đó, diện tích tôn cần sử dụng là: \[S = {x^2} + 4xh = {x^2} + 4x \cdot \frac{2}{{{x^2}}} = {x^2} + \frac{8}{x}\] (m2).

Chi phí để mua nguyên liệu là: \(T = 100{x^2} + 50 \cdot \frac{8}{x} = 100{x^2} + \frac{{400}}{x}\) (nghìn đồng).

Xét hàm số \(T\left( x \right) = 100{x^2} + \frac{{400}}{x}\) với \(x \in \left( {0; + \infty } \right)\).

Ta có: \(T'\left( x \right) = 200x - \frac{{400}}{{{x^2}}} = \frac{{200{x^3} - 400}}{{{x^2}}}\); \(T'\left( x \right) = 0\) khi \(x = \sqrt[3]{2}\).

Bảng biến thiên của hàm số \(T\left( x \right)\) trên khoảng \(\left( {0; + \infty } \right)\) như sau:

Ông Hùng cần đóng một thùng chứa gạo có dạng (ảnh 1)

Từ bảng biến thiên ta thấy, \(T\left( x \right)\) đạt giá trị nhỏ nhất trên \(\left( {0; + \infty } \right)\) khi \(x = \sqrt[3]{2}\).

Vậy ông Hùng cần đóng thùng chứa gạo với cạnh đáy bằng \(\sqrt[3]{2} \approx 1,3\) m để chi phí mua nguyên liệu là nhỏ nhất.

Đáp số: \(1,3\).

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP