1. Xác định hàm số \(y = ax + b\) để đồ thị của nó đi qua hai điểm \(A\left( {1;\,\, - 1} \right)\) và \(B\left( {4;\,\,5} \right)\).
2. Giải bài toán sau bằng cách lập hệ phương trình:
Một ôtô dự định đi từ A đến B trong khoảng thời gian nhất định. Nếu ôtô chạy nhanh hơn 10 km/h mỗi giờ thì đến nơi sớm hơn so với dự định là 3 giờ. Nếu ôtô chạy chậm hơn 10 km/h mỗi giờ thì đến nơi chậm mất so với dự định là 5 giờ. Tính vận tốc và thời gian dự định của ôtô.
1. Xác định hàm số \(y = ax + b\) để đồ thị của nó đi qua hai điểm \(A\left( {1;\,\, - 1} \right)\) và \(B\left( {4;\,\,5} \right)\).
2. Giải bài toán sau bằng cách lập hệ phương trình:
Một ôtô dự định đi từ A đến B trong khoảng thời gian nhất định. Nếu ôtô chạy nhanh hơn 10 km/h mỗi giờ thì đến nơi sớm hơn so với dự định là 3 giờ. Nếu ôtô chạy chậm hơn 10 km/h mỗi giờ thì đến nơi chậm mất so với dự định là 5 giờ. Tính vận tốc và thời gian dự định của ôtô.
Quảng cáo
Trả lời:
1. Vì đồ thị hàm số \(y = ax + b\) đi qua hai điểm \(A\left( {1;\,\, - 1} \right)\) và \(B\left( {4;\,\,5} \right)\) nên thay lần lượt từng cặp giá trị \(x,\,\,y\) vào hàm số, ta có: \(\left\{ \begin{array}{l} - 1 = a \cdot 1 + b\\5 = a \cdot 4 + b\end{array} \right.\) hay \(\left\{ \begin{array}{l}a + b = - 1\\4a + b = 5.\end{array} \right.\)
Trừ từng vế phương trình thứ hai cho phương trình thứ nhất của hệ phương trình trên, ta được:
\(3a = 6,\) suy ra \(a = 2.\)
Thay \(a = 2\) vào phương trình \(a + b = - 1,\) ta được:
\(2 + b = - 1,\) suy ra \(b = - 3.\)
Vậy hàm số cần tìm là \(y = 2x - 3.\)
2. Gọi \(x\) (km/h) là vận tốc dự định của ôtô và \(y\) (giờ) là thời gian dự định của ôtô để đi hết quãng đường AB \(\left( {x > 10,\,\,y > 0} \right).\)
– Quãng đường AB là \(xy\) (km).
– Nếu ôtô chạy nhanh hơn 10 km/h mỗi giờ thì đến nơi sớm hơn so với dự định là 3 giờ. Khi đó, ta có:
⦁ Vận tốc của ôtô lúc này là: \(x + 10\) (km/h).
⦁ Thời gian ôtô đi hết quãng đường AB là: \(y - 3\) (giờ).
⦁ Quãng đường AB là: \(\left( {x + 10} \right)\left( {y - 3} \right)\) (giờ).
Ta có phương trình: \(\left( {x + 10} \right)\left( {y - 3} \right) = xy\)
\(xy - 3x + 10y - 30 = xy\)
\( - 3x + 10y = 30\) (1)
– Nếu ôtô chạy chậm hơn 10 km/h mỗi giờ thì đến nơi muộn hơn so với dự định là 5 giờ. Khi đó, ta có:
⦁ Vận tốc của ôtô lúc này là: \(x - 10\) (km/h).
⦁ Thời gian ôtô đi hết quãng đường AB là: \(y + 5\) (giờ).
⦁ Quãng đường AB là: \(\left( {x + 10} \right)\left( {y + 5} \right)\) (giờ).
Ta có phương trình: \[\left( {x - 10} \right)\left( {y + 5} \right) = xy\]
\(xy + 5x - 10y - 50 = xy\)
\(5x - 10y = 50\) (2)
Từ phương trình (1) và phương trình (2) ta có hệ phương trình: \(\left\{ \begin{array}{l} - 3x + 10y = 30\\5x - 10y = 50\end{array} \right.\)
Cộng từng vế hai phương trình của hệ, ta được: \(2x = 80,\) suy ra \[x = 40\] (thỏa mãn).
Thay \[x = 40\] vào phương trình (1), ta được:
\( - 3 \cdot 40 + 10y = 30\) hay \(10y = 150,\) suy ra \(y = 15\) (thỏa mãn).
Vậy vận tốc dự định của ôtô là 40 (km/h) và thời gian ôtô đi hết quãng đường AB là 15 (giờ).
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: A

Tam giác \[ABC\] vuông tại \[A\], ta có: \[\sin \widehat {ABC} = \frac{{AC}}{{BC}}\].
Vậy ta chọn phương án A.Lời giải
Đáp án đúng là: D
Điều kiện xác định của phương trình \(\frac{1}{{x\left( {{x^2} + 4} \right)}} = \frac{{x + 1}}{x} - \frac{1}{{x - 2}}\) là \[x \ne 0\] và \[x - 2 \ne 0,\] hay \[x \ne 0\] và \[x \ne 2\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.