Cho các nội dung sau:
(1) Tìm điều kiện xác định của phương trình.
(2) Xét mỗi giá trị tìm được của ẩn, giá trị nào thỏa mãn điều kiện xác định thì đó là nghiệm của phương trình đã cho.
(3) Giải phương trình vừa nhận được.
(4) Quy đồng mẫu thức hai vế của phương trình rồi khử mẫu.
Sắp xếp các nội dung trên theo thứ tự các bước để giải phương trình chứa ẩn ở mẫu là
Cho các nội dung sau:
(1) Tìm điều kiện xác định của phương trình.
(2) Xét mỗi giá trị tìm được của ẩn, giá trị nào thỏa mãn điều kiện xác định thì đó là nghiệm của phương trình đã cho.
(3) Giải phương trình vừa nhận được.
(4) Quy đồng mẫu thức hai vế của phương trình rồi khử mẫu.
Sắp xếp các nội dung trên theo thứ tự các bước để giải phương trình chứa ẩn ở mẫu là
Quảng cáo
Trả lời:
Đáp án đúng là: D
Các bước để giải phương trình chứa ẩn ở mẫu là
(1) Tìm điều kiện xác định của phương trình.
(4) Quy đồng mẫu thức hai vế của phương trình rồi khử mẫu.
(3) Giải phương trình vừa nhận được.
(2) Xét mỗi giá trị tìm được của ẩn, giá trị nào thỏa mãn điều kiện xác định thì đó là nghiệm của phương trình đã cho.
Vậy ta chọn phương án D.
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: C
![Cho tam giác \(ABC\) vuông tại \(A\) có \[BC = a,\] \[AC = b,\,\,AB = c.\] Khẳng định nào sau đây là đúng? A. \[\sin B = \frac{c}{a}\]. B. \[c = \frac{b}{{\cot B}}\]. C. \[c = b \cdot \tan C\]. D. \[b = c \cdot \cos C\]. (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2024/10/blobid0-1727918783.png)
Tam giác \(ABC\) vuông tại \(A\), ta có:
⦁ \[\sin B = \frac{{AC}}{{BC}} = \frac{b}{a}\];
⦁ \(AC = BC \cdot \cos C\) hay \(b = a \cdot \cos C\);
⦁ \(AB = AC \cdot \tan C\) hay \(c = b \cdot \tan C\);
⦁ \(\cot B = \frac{{AB}}{{AC}} = \frac{c}{b}\) suy ra \(b = \frac{c}{{\cot B}}\).
Vậy phương án C là khẳng định đúngLời giải
![Cho tam giác \[ABC\] vuông tại \(A\) có \(AB = 6\,\,{\rm{cm}}\) và \(\cos B = \frac{3}{5}.\) Tính độ dài các cạnh \(BC,\,\,AC\) và số đo góc \(C\) (làm tròn kết quả số đo góc đến phút). (ảnh 2)](https://video.vietjack.com/upload2/quiz_source1/2024/10/blobid3-1727919474.png)
⦁ \(AB = BC \cdot \cos B\) suy ra \[BC = \frac{{AB}}{{\cos B}} = \frac{6}{{\frac{3}{5}}} = 10{\rm{\;(cm)}}{\rm{.}}\]
⦁ \(B{C^2} = A{B^2} + A{C^2}\)
Suy ra \(A{C^2} = B{C^2} - A{B^2} = {10^2} - {6^2} = 64,\) nên \[AC = 8{\rm{\;cm}}{\rm{.}}\]
⦁ \(\widehat {B\,} + \widehat {C\,} = 90^\circ \) suy ra \(\sin C = \cos B = \frac{3}{5}\), từ đó ta tìm được \(\widehat {C\,} \approx 36^\circ 52'\).
2. Đặt: \(BC = x\,\,\left( {\rm{m}} \right);\) \(AC = AB + BC = 500 + x\,\,\left( {\rm{m}} \right)\).
Xét \(\Delta ACD\) vuông tại \(C,\) ta có: \[CD = AC \cdot {\rm{tan}}\widehat {CAD} = \left( {500 + x} \right) \cdot {\rm{tan}}34^\circ .\]
Xét \(\Delta BCD\) vuông tại \(C,\) ta có: \(CD = BC \cdot {\rm{tan}}\widehat {CBD} = x \cdot {\rm{tan}}38^\circ \).
Do đó, ta có: \(\;\left( {500 + x} \right) \cdot {\rm{tan}}34^\circ = x \cdot {\rm{tan}}38^\circ \)
\(500 \cdot {\rm{tan}}34^\circ + x \cdot {\rm{tan}}34^\circ = x \cdot {\rm{tan}}38^\circ \)
\(\;x \cdot {\rm{tan}}38^\circ - x \cdot {\rm{tan}}34^\circ = 500 \cdot {\rm{tan}}34^\circ \)
\(\;x \cdot \left( {{\rm{tan}}38^\circ - {\rm{tan}}34^\circ } \right) = 500 \cdot {\rm{tan}}34^\circ \)
\(\;x = \frac{{500 \cdot {\rm{tan}}34^\circ }}{{{\rm{tan}}38^\circ - {\rm{tan}}34^\circ }} \approx 3\,\,158,5\,\,({\rm{m)}}{\rm{.}}\)
Suy ra \(CD = x \cdot {\rm{tan}}38^\circ \approx 3\,\,158,5 \cdot {\rm{tan}}38^\circ \approx 2468\,\,({\rm{m}}).\)
Vậy ngọn núi cao khoảng \(2\,\,468\) mét.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.