Câu hỏi:

03/10/2024 5,825

Rút gọn các biểu thức sau:

a) \(A = \sin 35^\circ  + \sin 67^\circ  - \cos 23^\circ  - \cos 55^\circ .\)   b) \(B = \cot 20^\circ  \cdot \cot 40^\circ  \cdot \cot 50^\circ  \cdot \cot 70^\circ .\)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) \(A = \sin 35^\circ  + \sin 67^\circ  - \cos 23^\circ  - \cos 55^\circ \)

\( = \sin 35^\circ  + \sin 67^\circ  - \sin \left( {90^\circ  - 23^\circ } \right) - \sin \left( {90^\circ  - 55^\circ } \right)\)

\( = \sin 35^\circ  + \sin 67^\circ  - \sin 67^\circ  - \sin 35^\circ  = 0.\)

Vậy \(A = 0.\)

b) \(B = \cot 20^\circ  \cdot \cot 40^\circ  \cdot \cot 50^\circ  \cdot \cot 70^\circ \)

\( = \cot 20^\circ  \cdot \cot 40^\circ  \cdot \tan \left( {90^\circ  - 50^\circ } \right) \cdot \tan \left( {90^\circ  - 70^\circ } \right)\)

\( = \cot 20^\circ  \cdot \cot 40^\circ  \cdot \tan 40^\circ  \cdot \tan 20^\circ \)

\( = \left( {\cot 20^\circ  \cdot \tan 20^\circ } \right) \cdot \left( {\cot 40^\circ  \cdot \tan 40^\circ } \right)\)

\( = 1 \cdot 1 = 1.\)

Vậy \(B = 1.\)

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Vì số nguyên tử của \({\rm{K,}}\,\,{\rm{Cl}}\) và \({\rm{O}}\) ở cả hai vế của phương trình phản ứng phải bằng nhau nên ta có \(\left\{ \begin{array}{l}x = 2\\x = 2\\3x = 2y\end{array} \right.\) hay \(\left\{ \begin{array}{l}x = 2\\3x = 2y\end{array} \right.\)

Thay \(x = 2\) vào phương trình \(3x = 2y,\) ta được:

\(3 \cdot 2 = 2y\) suy ra \(2y = 6,\) nên \(y = 3.\)

Vậy \(x = 2\) và \(y = 3.\) Khi đó ta hoàn thiện phương trình phản ứng hóa học sau cân bằng như sau:

\(2{\rm{KCl}}{{\rm{O}}_3} \to 2{\rm{KCl}} + 3{{\rm{O}}_2}.\)

b) Vì đồ thị hàm số \(y = ax + b\) đi qua hai điểm \(A\left( {1;\,\, - 1} \right)\)\(B\left( {4;\,\,5} \right)\) nên thay lần lượt từng cặp giá trị \(x,\,\,y\) vào hàm số, ta có: \(\left\{ \begin{array}{l} - 1 = a \cdot 1 + b\\5 = a \cdot 4 + b\end{array} \right.\) hay \(\left\{ \begin{array}{l}a + b = - 1\\4a + b = 5.\end{array} \right.\)

Trừ từng vế phương trình thứ hai cho phương trình thứ nhất của hệ, ta được:

\(3a = 6,\) suy ra \(a = 2.\)

Thay \(a = 2\) vào phương trình \(a + b = - 1,\) ta được:

\(2 + b = - 1,\) suy ra \(b = - 3.\)

Vậy hàm số cần tìm là \(y = 2x - 3.\)

c) Gọi \(x,\,\,y\) (km/h) lần lượt là vận tốc của thuyền khi nước yên lặng và vận tốc dòng nước \(\left( {x > y > 0} \right).\)

Vận tốc của thuyền khi đi xuôi dòng là: \(x + y\) (km/h).

Vận tốc của thuyền khi đi ngược dòng là: \(x - y\) (km/h).

Thời gian thuyền đi xuôi dòng \(40\) km là: \(\frac{{40}}{{x + y}}\) (giờ).

Thời gian thuyền đi ngược dòng \(40\) km là: \[\frac{{40}}{{x - y}}\] (giờ).

Theo bài, chiếc thuyền xuôi dòng và ngược dòng trên khúc sông dài \(40\) km hết \(4\) giờ \(30\) phút \(( = 4,5\) giờ) nên ta có phương trình: \(\frac{{40}}{{x + y}} + \frac{{40}}{{x - y}} = 4,5\).   (1)

Thời gian thuyền đi xuôi dòng \(5\) km là: \(\frac{5}{{x + y}}\) (giờ).

Thời gian thuyền đi ngược dòng \(4\) km là: \[\frac{4}{{x - y}}\] (giờ).

Theo bài, thời gian thuyền xuôi dòng \(5\) km bằng thời gian thuyền ngược dòng \(4\) km nên ta có phương trình: \(\frac{5}{{x + y}} = \frac{4}{{x - y}}\). (2)

Từ phương trình (1) và phương trình (2), ta có hệ phương trình:

\(\left\{ \begin{array}{l}\frac{{40}}{{x + y}} + \frac{{40}}{{x - y}} = 4,5\\\frac{5}{{x + y}} = \frac{4}{{x - y}}\end{array} \right.\) hay \(\left\{ \begin{array}{l}\frac{{40}}{{x + y}} + \frac{{40}}{{x - y}} = 4,5\\\frac{5}{{x + y}} - \frac{4}{{x - y}} = 0\end{array} \right.\)

Cách 1. Nhân hai vế của phương trình thứ hai với 8, ta được \(\left\{ \begin{array}{l}\frac{{40}}{{x + y}} + \frac{{40}}{{x - y}} = 4,5\\\frac{{40}}{{x + y}} - \frac{{32}}{{x - y}} = 0\end{array} \right.\)

Trừ từng vế phương trình thứ nhất cho phương trình thứ hai của hệ trên, ta được:

\(\frac{{72}}{{x - y}} = 4,5,\) suy ra \(\frac{1}{{x - y}} = 0,0625\) nên \(x - y = 16.\) (3)

Thay \(\frac{1}{{x - y}} = 0,0625\) vào phương trình \(\frac{5}{{x + y}} = \frac{4}{{x - y}},\) ta được:

\(\frac{5}{{x + y}} = 4 \cdot 0,0625\) suy ra \(\frac{5}{{x + y}} = 0,25\) nên \(x + y = 20\). (4)

Từ phương trình (3) và phương trình (4), ta có hệ phương trình: \(\left\{ {\begin{array}{*{20}{c}}{x + y = 20}\\{x - y = 16.}\end{array}} \right.\)

Cách 2. Đặt \(a = \frac{1}{{x + y}}\)\(b = \frac{1}{{x - y}}\) \(\left( {a > 0;\,\,b > 0} \right)\), ta có hệ phương trình:

\(\left\{ \begin{array}{l}40a + 40b = 4,5\\5a = 4b\end{array} \right.\) hay \(\left\{ \begin{array}{l}40a + 40b = 4,5\\5a - 4b = 0\end{array} \right.\)

Nhân hai vế của phương trình thứ hai của hệ trên với 10, ta được: \(\left\{ \begin{array}{l}40a + 40b = 4,5\\50a - 40b = 0\end{array} \right.\)

Cộng từng vế hai phương trình của hệ trên, ta được:

\(90a = 4,5\), suy ra \(a = \frac{1}{{20}}\) (thỏa mãn).

Thay \(a = \frac{1}{{20}}\) vào phương trình \(5a = 4b\), ta được:

\[5 \cdot \frac{1}{{20}} = 4b,\] suy ra \(b = \frac{1}{{16}}\) (thỏa mãn).

Với \(b = \frac{1}{{16}}\) ta có: \(\frac{1}{{x - y}} = \frac{1}{{16}}\) suy ra \(x - y = 16\).   (3’)

Với \(a = \frac{1}{{20}}\) ta có \(\frac{1}{{x + y}} = \frac{1}{{20}}\) suy ra \(x + y = 20\). (4’)

Từ phương trình (3’) và phương trình (4’), ta có hệ phương trình: \(\left\{ {\begin{array}{*{20}{c}}{x + y = 20}\\{x - y = 16.}\end{array}} \right.\)

Cộng từng vế hai phương trình của hệ trên, ta được:

\(2x = 36,\) suy ra \(x = 18\) (thỏa mãn).

Thay \(x = 18\) vào phương trình \(x + y = 20\), ta được:

\(18 + y = 20\), suy ra \(y = 2\) (thỏa mãn).

Vậy vận tốc dòng nước là 2 km/h.

Câu 2

Phương trình nào sau đây không là phương trình bậc nhất hai ẩn? 

Lời giải

Đáp án đúng là: B

Phương trình bậc nhất hai ẩn có dạng \[ax + by = c\] với \(a \ne 0\) hoặc \(b \ne 0\).

Phương trình \[0x + 0y = - 1\] không là phương trình bậc nhất hai ẩn \(a = b = 0.\)

Câu 4

Cho tam giác \(ABC\) vuông tại \(A\) có \(AC = 10,\,\,\widehat C = 30^\circ .\) Số đo góc \[\widehat {B\,}\] và độ dài cạnh \(BC\) (làm tròn kết quả đến hàng phần trăm) bằng 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Cho tam giác \(ABC\) vuông tại \(A\) có đường cao \(AH\) và \(\widehat B = \alpha .\) Tỉ số \(\frac{{HA}}{{HC}}\) bằng: 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Cho tam giác \(ABC\) vuông tại \(A\). Khi đó, \(\sin \widehat {ABC}\) bằng:

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay