Câu hỏi:

03/10/2024 4,034

Lúc 6 giờ sáng, bạn An đi từ nhà (điểm \[A)\] đến trường (điểm \[B)\] phải leo lên và xuống một con dốc đỉnh \(C\) được mô tả như hình vẽ dưới. Cho biết đoạn \[AB\] dài 762 m, \(\widehat {A\,\,} = 4^\circ ,\,\,\widehat {B\,} = 6^\circ .\)

a) Tính chiều cao con dốc (làm tròn kết quả đến hàng đơn vị của mét). b) Hỏi bạn An đến trường lúc mấy giờ (làm tròn kết quả đến phút)? Biết rằng tốc độ lên dốc là 4 km/h và tốc độ xuống dốc là 19 km/h. (ảnh 1)

a) Tính chiều cao con dốc (làm tròn kết quả đến hàng đơn vị của mét).

b) Hỏi bạn An đến trường lúc mấy giờ (làm tròn kết quả đến phút)? Biết rằng tốc độ lên dốc là 4 km/h và tốc độ xuống dốc là 19 km/h.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Kẻ \(CH \bot AB,\,\,H \in AB.\) Khi đó \(CH\) là chiều cao của con dốc.

a) Tính chiều cao con dốc (làm tròn kết quả đến hàng đơn vị của mét). b) Hỏi bạn An đến trường lúc mấy giờ (làm tròn kết quả đến phút)? Biết rằng tốc độ lên dốc là 4 km/h và tốc độ xuống dốc là 19 km/h. (ảnh 2)

⦁ Xét \(\Delta ACH\) vuông tại \[H,\] ta có: \({\rm{tan}}\widehat {CAH} = \frac{{CH}}{{AH}}\)

Suy ra \(AH = \frac{{CH}}{{{\rm{tan}}\widehat {CAH}}} = \frac{{CH}}{{{\rm{tan6}}^\circ }}\,\,({\rm{m}}).\) (1)

⦁ Xét \(\Delta BCH\) vuông tại \[H,\] ta có: \({\rm{tan}}\widehat {CBH} = \frac{{CH}}{{BH}}\)

Suy ra \(BH = \frac{{CH}}{{{\rm{tan}}\widehat {CBH}}} = \frac{{CH}}{{{\rm{tan4}}^\circ }}\,\,({\rm{m}}).\) (2)

⦁ Từ (1) và (2) ta có: \(AH + BH = \frac{{CH}}{{{\rm{tan6}}^\circ }} + \frac{{CH}}{{{\rm{tan4}}^\circ }}\) hay \(AB = CH \cdot \left( {\frac{1}{{{\rm{tan6}}^\circ }} + \frac{1}{{{\rm{tan4}}^\circ }}} \right)\)

Do đó \(762 = CH \cdot \left( {\frac{1}{{{\rm{tan6}}^\circ }} + \frac{1}{{{\rm{tan4}}^\circ }}} \right)\)

Suy ra \(CH = \frac{{762}}{{\frac{1}{{{\rm{tan6}}^\circ }} + \frac{1}{{{\rm{tan4}}^\circ }}}} \approx 32{\rm{\;(m)}}{\rm{.}}\)

Vậy chiều cao của con dốc là 32 m.

b) ⦁ Xét \(\Delta ACH\) vuông tại \[H,\] ta có: \({\rm{sin}}\widehat {CAH} = \frac{{CH}}{{AC}}\)

Suy ra \(AC = \frac{{CH}}{{{\rm{sin}}\widehat {CAH}}} \approx \frac{{{\rm{32}}}}{{{\rm{sin6}}^\circ }}{\rm{\;(m)}} = \frac{4}{{125{\rm{sin6}}^\circ }}{\rm{\;(km)}}{\rm{.}}\) (3)

Xét \(\Delta BCH\) vuông tại \[H,\] ta có: \({\rm{sin}}\widehat {CBH} = \frac{{CH}}{{CB}}\)

Suy ra \(CB = \frac{{CH}}{{{\rm{sin}}\widehat {CBH}}} \approx \frac{{{\rm{32}}}}{{{\rm{sin4}}^\circ }}{\rm{\;(m)}} = \frac{4}{{125{\rm{sin4}}^\circ }}{\rm{\;(km)}}{\rm{.}}\) (4)

⦁ Thời gian lên dốc \[AC\] là: \[{t_{AC}} = \frac{{{S_{AC}}}}{{{v_{ld}}}} = \frac{{AC}}{{{v_{ld}}}} \approx \frac{4}{{125{\rm{sin6}}^\circ }}:4 = \frac{1}{{125{\rm{sin6}}^\circ }}\] (giờ).

Thời gian xuống dốc \(CB\) là: \[{t_{CB}} = \frac{{{S_{CB}}}}{{{v_{xd}}}} = \frac{{CB}}{{{v_{xd}}}} \approx \frac{4}{{125{\rm{sin4}}^\circ }}:19 = \frac{4}{{{\rm{2}}\,\,{\rm{375sin4}}^\circ }}\] (giờ).

Thời gian đi từ \(A\) đến \(B\) là:

\({t_{AB}} = {t_{AC}} + {t_{CB}} \approx \frac{1}{{125\sin 6^\circ }} + \frac{4}{{{\rm{2}}\,\,{\rm{375sin4}}^\circ }} \approx 0,1007\) (giờ) ≈ 6 phút.

Vậy bạn An đến trường lúc 6 giờ + 6 phút = 6 giờ 6 phút.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Vì số nguyên tử của \({\rm{K,}}\,\,{\rm{Cl}}\) và \({\rm{O}}\) ở cả hai vế của phương trình phản ứng phải bằng nhau nên ta có \(\left\{ \begin{array}{l}x = 2\\x = 2\\3x = 2y\end{array} \right.\) hay \(\left\{ \begin{array}{l}x = 2\\3x = 2y\end{array} \right.\)

Thay \(x = 2\) vào phương trình \(3x = 2y,\) ta được:

\(3 \cdot 2 = 2y\) suy ra \(2y = 6,\) nên \(y = 3.\)

Vậy \(x = 2\) và \(y = 3.\) Khi đó ta hoàn thiện phương trình phản ứng hóa học sau cân bằng như sau:

\(2{\rm{KCl}}{{\rm{O}}_3} \to 2{\rm{KCl}} + 3{{\rm{O}}_2}.\)

b) Vì đồ thị hàm số \(y = ax + b\) đi qua hai điểm \(A\left( {1;\,\, - 1} \right)\)\(B\left( {4;\,\,5} \right)\) nên thay lần lượt từng cặp giá trị \(x,\,\,y\) vào hàm số, ta có: \(\left\{ \begin{array}{l} - 1 = a \cdot 1 + b\\5 = a \cdot 4 + b\end{array} \right.\) hay \(\left\{ \begin{array}{l}a + b = - 1\\4a + b = 5.\end{array} \right.\)

Trừ từng vế phương trình thứ hai cho phương trình thứ nhất của hệ, ta được:

\(3a = 6,\) suy ra \(a = 2.\)

Thay \(a = 2\) vào phương trình \(a + b = - 1,\) ta được:

\(2 + b = - 1,\) suy ra \(b = - 3.\)

Vậy hàm số cần tìm là \(y = 2x - 3.\)

c) Gọi \(x,\,\,y\) (km/h) lần lượt là vận tốc của thuyền khi nước yên lặng và vận tốc dòng nước \(\left( {x > y > 0} \right).\)

Vận tốc của thuyền khi đi xuôi dòng là: \(x + y\) (km/h).

Vận tốc của thuyền khi đi ngược dòng là: \(x - y\) (km/h).

Thời gian thuyền đi xuôi dòng \(40\) km là: \(\frac{{40}}{{x + y}}\) (giờ).

Thời gian thuyền đi ngược dòng \(40\) km là: \[\frac{{40}}{{x - y}}\] (giờ).

Theo bài, chiếc thuyền xuôi dòng và ngược dòng trên khúc sông dài \(40\) km hết \(4\) giờ \(30\) phút \(( = 4,5\) giờ) nên ta có phương trình: \(\frac{{40}}{{x + y}} + \frac{{40}}{{x - y}} = 4,5\).   (1)

Thời gian thuyền đi xuôi dòng \(5\) km là: \(\frac{5}{{x + y}}\) (giờ).

Thời gian thuyền đi ngược dòng \(4\) km là: \[\frac{4}{{x - y}}\] (giờ).

Theo bài, thời gian thuyền xuôi dòng \(5\) km bằng thời gian thuyền ngược dòng \(4\) km nên ta có phương trình: \(\frac{5}{{x + y}} = \frac{4}{{x - y}}\). (2)

Từ phương trình (1) và phương trình (2), ta có hệ phương trình:

\(\left\{ \begin{array}{l}\frac{{40}}{{x + y}} + \frac{{40}}{{x - y}} = 4,5\\\frac{5}{{x + y}} = \frac{4}{{x - y}}\end{array} \right.\) hay \(\left\{ \begin{array}{l}\frac{{40}}{{x + y}} + \frac{{40}}{{x - y}} = 4,5\\\frac{5}{{x + y}} - \frac{4}{{x - y}} = 0\end{array} \right.\)

Cách 1. Nhân hai vế của phương trình thứ hai với 8, ta được \(\left\{ \begin{array}{l}\frac{{40}}{{x + y}} + \frac{{40}}{{x - y}} = 4,5\\\frac{{40}}{{x + y}} - \frac{{32}}{{x - y}} = 0\end{array} \right.\)

Trừ từng vế phương trình thứ nhất cho phương trình thứ hai của hệ trên, ta được:

\(\frac{{72}}{{x - y}} = 4,5,\) suy ra \(\frac{1}{{x - y}} = 0,0625\) nên \(x - y = 16.\) (3)

Thay \(\frac{1}{{x - y}} = 0,0625\) vào phương trình \(\frac{5}{{x + y}} = \frac{4}{{x - y}},\) ta được:

\(\frac{5}{{x + y}} = 4 \cdot 0,0625\) suy ra \(\frac{5}{{x + y}} = 0,25\) nên \(x + y = 20\). (4)

Từ phương trình (3) và phương trình (4), ta có hệ phương trình: \(\left\{ {\begin{array}{*{20}{c}}{x + y = 20}\\{x - y = 16.}\end{array}} \right.\)

Cách 2. Đặt \(a = \frac{1}{{x + y}}\)\(b = \frac{1}{{x - y}}\) \(\left( {a > 0;\,\,b > 0} \right)\), ta có hệ phương trình:

\(\left\{ \begin{array}{l}40a + 40b = 4,5\\5a = 4b\end{array} \right.\) hay \(\left\{ \begin{array}{l}40a + 40b = 4,5\\5a - 4b = 0\end{array} \right.\)

Nhân hai vế của phương trình thứ hai của hệ trên với 10, ta được: \(\left\{ \begin{array}{l}40a + 40b = 4,5\\50a - 40b = 0\end{array} \right.\)

Cộng từng vế hai phương trình của hệ trên, ta được:

\(90a = 4,5\), suy ra \(a = \frac{1}{{20}}\) (thỏa mãn).

Thay \(a = \frac{1}{{20}}\) vào phương trình \(5a = 4b\), ta được:

\[5 \cdot \frac{1}{{20}} = 4b,\] suy ra \(b = \frac{1}{{16}}\) (thỏa mãn).

Với \(b = \frac{1}{{16}}\) ta có: \(\frac{1}{{x - y}} = \frac{1}{{16}}\) suy ra \(x - y = 16\).   (3’)

Với \(a = \frac{1}{{20}}\) ta có \(\frac{1}{{x + y}} = \frac{1}{{20}}\) suy ra \(x + y = 20\). (4’)

Từ phương trình (3’) và phương trình (4’), ta có hệ phương trình: \(\left\{ {\begin{array}{*{20}{c}}{x + y = 20}\\{x - y = 16.}\end{array}} \right.\)

Cộng từng vế hai phương trình của hệ trên, ta được:

\(2x = 36,\) suy ra \(x = 18\) (thỏa mãn).

Thay \(x = 18\) vào phương trình \(x + y = 20\), ta được:

\(18 + y = 20\), suy ra \(y = 2\) (thỏa mãn).

Vậy vận tốc dòng nước là 2 km/h.

Lời giải

a) \(A = \sin 35^\circ  + \sin 67^\circ  - \cos 23^\circ  - \cos 55^\circ \)

\( = \sin 35^\circ  + \sin 67^\circ  - \sin \left( {90^\circ  - 23^\circ } \right) - \sin \left( {90^\circ  - 55^\circ } \right)\)

\( = \sin 35^\circ  + \sin 67^\circ  - \sin 67^\circ  - \sin 35^\circ  = 0.\)

Vậy \(A = 0.\)

b) \(B = \cot 20^\circ  \cdot \cot 40^\circ  \cdot \cot 50^\circ  \cdot \cot 70^\circ \)

\( = \cot 20^\circ  \cdot \cot 40^\circ  \cdot \tan \left( {90^\circ  - 50^\circ } \right) \cdot \tan \left( {90^\circ  - 70^\circ } \right)\)

\( = \cot 20^\circ  \cdot \cot 40^\circ  \cdot \tan 40^\circ  \cdot \tan 20^\circ \)

\( = \left( {\cot 20^\circ  \cdot \tan 20^\circ } \right) \cdot \left( {\cot 40^\circ  \cdot \tan 40^\circ } \right)\)

\( = 1 \cdot 1 = 1.\)

Vậy \(B = 1.\)

Câu 3

Phương trình nào sau đây không là phương trình bậc nhất hai ẩn? 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Cho tam giác \(ABC\) vuông tại \(A\) có \(AC = 10,\,\,\widehat C = 30^\circ .\) Số đo góc \[\widehat {B\,}\] và độ dài cạnh \(BC\) (làm tròn kết quả đến hàng phần trăm) bằng 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Cho tam giác \(ABC\) vuông tại \(A\) có đường cao \(AH\) và \(\widehat B = \alpha .\) Tỉ số \(\frac{{HA}}{{HC}}\) bằng: 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Cho tam giác \(ABC\) vuông tại \(A\). Khi đó, \(\sin \widehat {ABC}\) bằng:

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay