Câu hỏi:

09/10/2024 39,634

Người ta giăng lưới để nuôi riêng một loại cá trên một góc hồ. Biết rằng lưới được giăng theo một đường thẳng từ một vị trí trên bờ ngang đến một vị trí trên bờ dọc và phải đi qua một cái cọc đã cắm sẵn ở vị trí . Diện tích nhỏ nhất có thể giăng lưới là bao nhiêu mét vuông, biết rằng khoảng cách từ cọc đến bờ ngang là 5 m và khoảng cách từ cọc đến bờ dọc là 12 m.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta mô hình hóa bài toán đã cho như hình trên với lần lượt là hình chiếu của lên bờ dọc và bờ ngang . Khi đó, theo bài ra có .

Suy ra .

Đặt .

Ta có nên .

Suy ra (m).

Diện tích khu nuôi cá riêng là:

(m2).

Xét hàm số với .

Ta có . Trên khoảng , .

Bảng biến thiên của hàm số trên khoảng như sau:

                                               

              –                          +

                                                

 

                          

Từ bảng biến thiên, ta có tại .

Vậy diện tích nhỏ nhất có thể giăng dưới là m2.

Ngoài ra, ta có thể dùng bất đẳng thức:

.

Dấu “=” xảy ra khi và chỉ khi .

Đáp số: .

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: B

Từ đồ thị đã cho, ta thấy đường tiệm cận xiên của đồ thị hàm số là đường thẳng đi qua hai điểm . Do đó, tiệm cận xiên của đồ thị hàm số đã cho là đường thẳng .

Lời giải

Tập xác định của hàm số là .

Ta có . Giả sử , suy ra tiếp tuyến của tại có phương trình là .

nên đường thẳng là tiệm cận đứng của .

nên đường thẳng là tiệm cận ngang của .

Suy ra .

Điểm là giao điểm của tiệm cận đứng và tiếp tuyến, điểm là giao điểm của tiệm cận ngang và tiếp tuyến.

Ta có chu vi của tam giác bằng:

.

Áp dụng bất đẳng thức AM-GM, ta có .

Đẳng thức xảy ra khi hoặc .

Vậy chu vi tam giác đạt giá trị nhỏ nhất bằng khi hoặc .

Suy ra nên .

Đáp số: .

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay