Câu hỏi:

19/08/2025 510 Lưu

Cho hàm số \(f\left( x \right) = m\sqrt {x - 1} \) với \(m\) là tham số thực. Gọi \({m_1},\,{m_2}\) là hai giá trị của \(m\) thỏa mãn \(\mathop {\min }\limits_{\left[ {2;\,5} \right]} f\left( x \right) + \mathop {\max }\limits_{\left[ {2;\,5} \right]} f\left( x \right) = {m^2} - 10\). Giá trị của biểu thức \({m_1} + {m_2}\) bằng bao nhiêu?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Với mọi \(x \in \left[ {2;\,5} \right]\), ta có: \(f'\left( x \right) = \frac{m}{{2\sqrt {x - 1} }}\).

Ta thấy dấu của đạo hàm \(f'\left( x \right)\) phụ thuộc vào dấu của tham số \(m\).

Với mọi \(m \ne 0\) thì \(f\left( x \right)\) đơn điệu trên \(\left[ {2;\,5} \right]\).

Suy ra \(\mathop {\min }\limits_{\left[ {2;\,5} \right]} f\left( x \right) + \mathop {\max }\limits_{\left[ {2;\,5} \right]} f\left( x \right) = f\left( 2 \right) + f\left( 5 \right) = m + 2m = 3m\).

Theo bài ra, ta có: \({m^2} - 10 = 3m \Leftrightarrow {m^2} - 3m - 10 = 0 \Leftrightarrow \)\(m =  - 2\) hoặc \(m = 5\).

Vậy \({m_1} + {m_2} = 3\).

Đáp số: \(3\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(y = 2x\).
B. \(y = 2x - 1\).
C. \(y = 2x + 1\).
D. \(y = x + 1\).

Lời giải

Đáp án đúng là: C

Ta có \[\mathop {\lim }\limits_{x \to  + \infty } \left[ {y - \left( {2x + 1} \right)} \right] = \mathop {\lim }\limits_{x \to  + \infty } \left( { - \frac{3}{{x + 1}}} \right) = 0\]; \[\mathop {\lim }\limits_{x \to  - \infty } \left[ {y - \left( {2x + 1} \right)} \right] = \mathop {\lim }\limits_{x \to  - \infty } \left( { - \frac{3}{{x + 1}}} \right) = 0\].

Do đó, đường thẳng \(y = 2x + 1\) là tiệm cận xiên của đồ thị hàm số đã cho.

Câu 2

A. \(\left( {1;\,0} \right)\).
B. \(\left( { - 1;\,1} \right)\).
C. \(\left( { - 1;\, - 2} \right)\).
D. \(\left( { - 1;\,0} \right)\).

Lời giải

Đáp án đúng là: D

Đồ thị hàm số đã cho nhận giao điểm của hai đường tiệm cận làm tâm đối xứng.

Giao điểm này có tọa độ là \(\left( { - 1;\,0} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\left( { - 2;\,4} \right)\).
B. \(\left( { - 2;1} \right)\).
C. \(\left( { - 2;\, + \infty } \right)\).
D. \(\left( {4;\, + \infty } \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP