Một người đàn ông muốn chèo thuyền ở vị trí \(A\) tới điểm \(B\) về phía hạ lưu bờ đối diện, càng nhanh càng tốt, trên một bờ sông thẳng rộng 3 km (như hình vẽ). Anh có thể chèo thuyền của mình trực tiếp qua sông để đến \(C\) và sau đó chạy đến \(B\), hay có thể chèo trực tiếp đến \(B\), hoặc anh ta có thể chèo thuyền đến một điểm \(D\) giữa \(C\) và \(B\) và sau đó chạy đến \(B\). Biết anh ấy có thể chèo thuyền 6 km/h, chạy 8 km/h và quãng đường \(BC = 8\) km. Biết tốc độ của dòng nước là không đáng kể so với tốc độ chèo thuyền của người đàn ông. Khoảng thời gian ngắn nhất để người đàn ông đến \(B\) là bao nhiêu giờ (làm tròn kết quả đến hàng phần mười)?

Một người đàn ông muốn chèo thuyền ở vị trí \(A\) tới điểm \(B\) về phía hạ lưu bờ đối diện, càng nhanh càng tốt, trên một bờ sông thẳng rộng 3 km (như hình vẽ). Anh có thể chèo thuyền của mình trực tiếp qua sông để đến \(C\) và sau đó chạy đến \(B\), hay có thể chèo trực tiếp đến \(B\), hoặc anh ta có thể chèo thuyền đến một điểm \(D\) giữa \(C\) và \(B\) và sau đó chạy đến \(B\). Biết anh ấy có thể chèo thuyền 6 km/h, chạy 8 km/h và quãng đường \(BC = 8\) km. Biết tốc độ của dòng nước là không đáng kể so với tốc độ chèo thuyền của người đàn ông. Khoảng thời gian ngắn nhất để người đàn ông đến \(B\) là bao nhiêu giờ (làm tròn kết quả đến hàng phần mười)?
Câu hỏi trong đề: Đề thi giữa kì 1 Toán 12 Cánh Diều có đáp án !!
Quảng cáo
Trả lời:
Đặt \(CD = x\) (km, \(x \ge 0\)). Quãng đường chạy bộ \(DB = 8 - x\) (km) và quãng đường chèo thuyền \[AD = \sqrt {9 + {x^2}} \] (km).
Rõ ràng \(x\) phải thỏa mãn điều kiện \(0 \le x \le 8\).
Khi đó, thời gian chèo thuyền là \(\frac{{\sqrt {9 + {x^2}} }}{6}\) (giờ) và thời gian chạy bộ là \(\frac{{8 - x}}{8}\) (giờ).
Tổng thời gian mà người đàn ông cần có là:
\(T\left( x \right) = \frac{{\sqrt {9 + {x^2}} }}{6} + \frac{{8 - x}}{8}\), \(x \in \left[ {0;\,8} \right]\).
Ta có: \(T'\left( x \right) = \frac{x}{{6\sqrt {{x^2} + 9} }} - \frac{1}{8}\). Trên khoảng \(\left( {0;8} \right)\), \(T'\left( x \right) = 0 \Leftrightarrow x = \frac{9}{{\sqrt 7 }}\).
\(T\left( 0 \right) = \frac{3}{2};\,T\left( {\frac{9}{{\sqrt 7 }}} \right) = 1 + \frac{{\sqrt 7 }}{8};\,\,T\left( 8 \right) = \frac{{\sqrt {73} }}{6}\).
Do đó, \(\mathop {\min }\limits_{\left[ {0;8} \right]} T\left( x \right) = T\left( {\frac{9}{{\sqrt 7 }}} \right) = 1 + \frac{{\sqrt 7 }}{8}\).
Vậy thời gian ngắn nhất mà người đàn ông cần dùng là \(1 + \frac{{\sqrt 7 }}{8} \approx 1,3\) (giờ) và đi bằng cách chèo thuyền đến điểm \(D\) cách \(C\) một khoảng \(\frac{9}{{\sqrt 7 }}\)km rồi từ đó chạy bộ đến điểm \(B\).
Đáp số: \(1,3\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: C
Ta có \[\mathop {\lim }\limits_{x \to + \infty } \left[ {y - \left( {2x + 1} \right)} \right] = \mathop {\lim }\limits_{x \to + \infty } \left( { - \frac{3}{{x + 1}}} \right) = 0\]; \[\mathop {\lim }\limits_{x \to - \infty } \left[ {y - \left( {2x + 1} \right)} \right] = \mathop {\lim }\limits_{x \to - \infty } \left( { - \frac{3}{{x + 1}}} \right) = 0\].
Do đó, đường thẳng \(y = 2x + 1\) là tiệm cận xiên của đồ thị hàm số đã cho.
Lời giải
Đáp án đúng là: D
Đồ thị hàm số đã cho nhận giao điểm của hai đường tiệm cận làm tâm đối xứng.
Giao điểm này có tọa độ là \(\left( { - 1;\,0} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.