Câu hỏi:

10/10/2024 395 Lưu

PHẦN I. Câu trắc nghiệm nhiều phương án lựa chọn. Thí sinh trả lời từ câu 1 đến câu 12. Mỗi câu hỏi thí sinh chỉ chọn một phương án.

Cho hàm số \[y = f\left( x \right)\] có bảng xét dấu đạo hàm \(y'\) như sau:

Hàm số đã cho nghịch biến trên khoảng nào trong các khoảng dưới đây?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: C

Từ bảng xét dấu, ta thấy: Trên khoảng \(\left( {3;7} \right)\), \(y' < 0\), do

Đáp án đúng là: C

Từ bảng xét dấu, ta thấy: Trên khoảng \(\left( {3;7} \right)\), \(y' < 0\), do đó hàm số đã cho nghịch biến trên khoảng này.

đó hàm số đã cho nghịch biến trên khoảng này.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta thấy \(M\left( x \right) = \frac{{0,0001{x^2} + 0,2x + 10\,000}}{x} = 0,0001x + \frac{{10\,000}}{x} + 0,2\).

Xét hàm số \(M\left( x \right) = 0,0001x + \frac{{10\,000}}{x} + 0,2\), với \(x \ge 1\).

Ta có: \(M'\left( x \right) = 0,0001 - \frac{{10\,000}}{{{x^2}}}\);

\(M'\left( x \right) = 0 \Leftrightarrow x = 10\,000\,\,\,\left( {{\rm{do}}\,\,x \ge 1} \right)\).

Bảng biến thiên của hàm số như sau:

Căn cứ bảng biến thiên, ta có: \(\mathop {\min }\limits_{\left[ {1;\, + \infty } \right)} M\left( x \right) = 2,2\) tại \(x = 10\,000\).

Vậy doanh nghiệp cần sản xuất \(10\,000\) sản phẩm để chi phí trung bình là nhỏ nhất.

Đáp số: \(10\,000\).

Lời giải

Đáp án đúng là: A

Dựa vào đồ thị hàm số, ta thấy tiệm cận xiên của đồ thị hàm số đã cho là đường thẳng đi qua hai điểm \(\left( {1;0} \right)\)\(\left( {0; - 1} \right)\), chính là đường thẳng \(y = x - 1\).

Do đó, đường thẳng \(y = x - 1\) là tiệm cận xiên của đồ thị hàm số đã cho.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP