Cho tứ diện \(ABCD\). Gọi \[I,\,J\] lần lượt là trung điểm của \(AB\) và \(CD\), \(G\) là trung điểm của \(IJ\) (tham khảo hình vẽ).

a) \(\overrightarrow {GI} + \overrightarrow {JG} = \overrightarrow 0 \).
b) \(\overrightarrow {AC} + \overrightarrow {BD} = 2\overrightarrow {IJ} \).
c) \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {GD} = \overrightarrow 0 \).
d) \(\left| {\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} + \overrightarrow {MD} } \right|\) nhỏ nhất khi \(M \equiv G\).
Cho tứ diện \(ABCD\). Gọi \[I,\,J\] lần lượt là trung điểm của \(AB\) và \(CD\), \(G\) là trung điểm của \(IJ\) (tham khảo hình vẽ).
a) \(\overrightarrow {GI} + \overrightarrow {JG} = \overrightarrow 0 \).
b) \(\overrightarrow {AC} + \overrightarrow {BD} = 2\overrightarrow {IJ} \).
c) \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {GD} = \overrightarrow 0 \).
d) \(\left| {\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} + \overrightarrow {MD} } \right|\) nhỏ nhất khi \(M \equiv G\).
Câu hỏi trong đề: Đề thi giữa kì 1 Toán 12 Cánh Diều có đáp án !!
Quảng cáo
Trả lời:
a) S, b) Đ, c) Đ, d) Đ.
Hướng dẫn giải
– Vì \(G\) là trung điểm của \(IJ\) nên \(\overrightarrow {GI} + \overrightarrow {JG} = \frac{1}{2}\overrightarrow {JI} + \frac{1}{2}\overrightarrow {JI} = \overrightarrow {JI} \ne \overrightarrow 0 \). Do đó, ý a) sai.
– Ta có: \(\left\{ \begin{array}{l}\overrightarrow {IJ} = \overrightarrow {IA} + \overrightarrow {AC} + \overrightarrow {CJ} \\\overrightarrow {IJ} = \overrightarrow {IB} + \overrightarrow {BD} + \overrightarrow {DJ} \end{array} \right.\).
Suy ra \(2\overrightarrow {IJ} = \left( {\overrightarrow {IA} + \overrightarrow {IB} } \right) + \left( {\overrightarrow {AC} + \overrightarrow {BD} } \right) + \left( {\overrightarrow {CJ} + \overrightarrow {DJ} } \right) = \overrightarrow {AC} + \overrightarrow {BD} \). Vậy ý b) đúng.
– Ta có: \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {GD} = \left( {\overrightarrow {GA} + \overrightarrow {GB} } \right) + \left( {\overrightarrow {GC} + \overrightarrow {GD} } \right)\)
\( = 2\overrightarrow {GI} + 2\overrightarrow {GJ} = 2\left( {\overrightarrow {GI} + \overrightarrow {GJ} } \right) = \overrightarrow 0 \).
Vậy ý c) đúng.
– Ta có: \(\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} + \overrightarrow {MD} = 4\overrightarrow {MG} + \left( {\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {GD} } \right) = 4\overrightarrow {MG} \).
Suy ra \(\left| {\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} + \overrightarrow {MD} } \right| = 4\left| {\overrightarrow {MG} } \right| = 4MG\).
Vậy \(\left| {\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} + \overrightarrow {MD} } \right|\) nhỏ nhất khi \(MG\) nhỏ nhất, tức là \(MG = 0\) hay \(M \equiv G\).
Do đó, ý d) đúng.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta thấy \(M\left( x \right) = \frac{{0,0001{x^2} + 0,2x + 10\,000}}{x} = 0,0001x + \frac{{10\,000}}{x} + 0,2\).
Xét hàm số \(M\left( x \right) = 0,0001x + \frac{{10\,000}}{x} + 0,2\), với \(x \ge 1\).
Ta có: \(M'\left( x \right) = 0,0001 - \frac{{10\,000}}{{{x^2}}}\);
\(M'\left( x \right) = 0 \Leftrightarrow x = 10\,000\,\,\,\left( {{\rm{do}}\,\,x \ge 1} \right)\).
Bảng biến thiên của hàm số như sau:
Căn cứ bảng biến thiên, ta có: \(\mathop {\min }\limits_{\left[ {1;\, + \infty } \right)} M\left( x \right) = 2,2\) tại \(x = 10\,000\).
Vậy doanh nghiệp cần sản xuất \(10\,000\) sản phẩm để chi phí trung bình là nhỏ nhất.
Đáp số: \(10\,000\).
Lời giải
Đáp án đúng là: A
Dựa vào đồ thị hàm số, ta thấy tiệm cận xiên của đồ thị hàm số đã cho là đường thẳng đi qua hai điểm \(\left( {1;0} \right)\) và \(\left( {0; - 1} \right)\), chính là đường thẳng \(y = x - 1\).
Do đó, đường thẳng \(y = x - 1\) là tiệm cận xiên của đồ thị hàm số đã cho.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.