Câu hỏi:

10/10/2024 988

Cho tứ diện \(ABCD\). Gọi \[I,\,J\] lần lượt là trung điểm của \(AB\)\(CD\), \(G\) là trung điểm của \(IJ\) (tham khảo hình vẽ).  

a) \(\overrightarrow {GI}  + \overrightarrow {JG}  = \overrightarrow 0 \).

b) \(\overrightarrow {AC}  + \overrightarrow {BD}  = 2\overrightarrow {IJ} \).

c) \(\overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  + \overrightarrow {GD}  = \overrightarrow 0 \).

d) \(\left| {\overrightarrow {MA}  + \overrightarrow {MB}  + \overrightarrow {MC}  + \overrightarrow {MD} } \right|\) nhỏ nhất khi \(M \equiv G\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) S, b) Đ, c) Đ, d) Đ.

Hướng dẫn giải

\(G\) là trung điểm của \(IJ\) nên \(\overrightarrow {GI}  + \overrightarrow {JG}  = \frac{1}{2}\overrightarrow {JI}  + \frac{1}{2}\overrightarrow {JI}  = \overrightarrow {JI}  \ne \overrightarrow 0 \). Do đó, ý a) sai.

– Ta có: \(\left\{ \begin{array}{l}\overrightarrow {IJ}  = \overrightarrow {IA}  + \overrightarrow {AC}  + \overrightarrow {CJ} \\\overrightarrow {IJ}  = \overrightarrow {IB}  + \overrightarrow {BD}  + \overrightarrow {DJ} \end{array} \right.\).

Suy ra \(2\overrightarrow {IJ}  = \left( {\overrightarrow {IA}  + \overrightarrow {IB} } \right) + \left( {\overrightarrow {AC}  + \overrightarrow {BD} } \right) + \left( {\overrightarrow {CJ}  + \overrightarrow {DJ} } \right) = \overrightarrow {AC}  + \overrightarrow {BD} \). Vậy ý b) đúng.

– Ta có: \(\overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  + \overrightarrow {GD}  = \left( {\overrightarrow {GA}  + \overrightarrow {GB} } \right) + \left( {\overrightarrow {GC}  + \overrightarrow {GD} } \right)\)

\( = 2\overrightarrow {GI}  + 2\overrightarrow {GJ}  = 2\left( {\overrightarrow {GI}  + \overrightarrow {GJ} } \right) = \overrightarrow 0 \).

Vậy ý c) đúng.

– Ta có: \(\overrightarrow {MA}  + \overrightarrow {MB}  + \overrightarrow {MC}  + \overrightarrow {MD}  = 4\overrightarrow {MG}  + \left( {\overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  + \overrightarrow {GD} } \right) = 4\overrightarrow {MG} \).

Suy ra \(\left| {\overrightarrow {MA}  + \overrightarrow {MB}  + \overrightarrow {MC}  + \overrightarrow {MD} } \right| = 4\left| {\overrightarrow {MG} } \right| = 4MG\).

Vậy \(\left| {\overrightarrow {MA}  + \overrightarrow {MB}  + \overrightarrow {MC}  + \overrightarrow {MD} } \right|\) nhỏ nhất khi \(MG\) nhỏ nhất, tức là \(MG = 0\) hay \(M \equiv G\).

Do đó, ý d) đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta thấy \(M\left( x \right) = \frac{{0,0001{x^2} + 0,2x + 10\,000}}{x} = 0,0001x + \frac{{10\,000}}{x} + 0,2\).

Xét hàm số \(M\left( x \right) = 0,0001x + \frac{{10\,000}}{x} + 0,2\), với \(x \ge 1\).

Ta có: \(M'\left( x \right) = 0,0001 - \frac{{10\,000}}{{{x^2}}}\);

\(M'\left( x \right) = 0 \Leftrightarrow x = 10\,000\,\,\,\left( {{\rm{do}}\,\,x \ge 1} \right)\).

Bảng biến thiên của hàm số như sau:

Căn cứ bảng biến thiên, ta có: \(\mathop {\min }\limits_{\left[ {1;\, + \infty } \right)} M\left( x \right) = 2,2\) tại \(x = 10\,000\).

Vậy doanh nghiệp cần sản xuất \(10\,000\) sản phẩm để chi phí trung bình là nhỏ nhất.

Đáp số: \(10\,000\).

Lời giải

Đáp án đúng là: A

Dựa vào đồ thị hàm số, ta thấy tiệm cận xiên của đồ thị hàm số đã cho là đường thẳng đi qua hai điểm \(\left( {1;0} \right)\)\(\left( {0; - 1} \right)\), chính là đường thẳng \(y = x - 1\).

Do đó, đường thẳng \(y = x - 1\) là tiệm cận xiên của đồ thị hàm số đã cho.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay