Câu hỏi:

10/10/2024 1,054 Lưu

Cho hình lăng trụ tam giác đều \(ABC.A'B'C'\)\(AB = a\)\(AA' = a\sqrt 2 \). Số đo góc giữa hai vectơ \(\overrightarrow {AB'} \)\(\overrightarrow {BC'} \) bằng bao nhiêu độ?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có: \(\overrightarrow {AB'}  \cdot \overrightarrow {BC'}  = \left( {\overrightarrow {AB}  + \overrightarrow {BB'} } \right)\left( {\overrightarrow {BC}  + \overrightarrow {CC'} } \right)\)

\( = \overrightarrow {AB}  \cdot \overrightarrow {BC}  + \overrightarrow {AB}  \cdot \overrightarrow {CC'}  + \overrightarrow {BB'}  \cdot \overrightarrow {BC}  + \overrightarrow {BB'}  \cdot \overrightarrow {CC'} \)

\( =  - \overrightarrow {BA}  \cdot \overrightarrow {BC}  + 0 + 0 + \overrightarrow {BB'}  \cdot \overrightarrow {BB'} \)

\( =  - BA \cdot BC \cdot \cos \widehat {ABC} + {\overrightarrow {BB'} ^2}\)

\( =  - a \cdot a \cdot \cos 60^\circ  + {\left( {a\sqrt 2 } \right)^2} =  - \frac{{{a^2}}}{2} + 2{a^2} = \frac{{3{a^2}}}{2}\).

Khi đó, \(\cos \left( {\overrightarrow {AB'} ,\,\overrightarrow {BC'} } \right) = \frac{{\overrightarrow {AB'}  \cdot \,\overrightarrow {BC'} }}{{\left| {\overrightarrow {AB'} } \right| \cdot \,\left| {\overrightarrow {BC'} } \right|}} = \frac{{\frac{{3{a^2}}}{2}}}{{a\sqrt 3  \cdot a\sqrt 3 }} = \frac{1}{2}\). Suy ra \(\left( {\overrightarrow {AB'} ,\,\overrightarrow {BC'} } \right) = 60^\circ \).

Đáp số: \(60\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta thấy \(M\left( x \right) = \frac{{0,0001{x^2} + 0,2x + 10\,000}}{x} = 0,0001x + \frac{{10\,000}}{x} + 0,2\).

Xét hàm số \(M\left( x \right) = 0,0001x + \frac{{10\,000}}{x} + 0,2\), với \(x \ge 1\).

Ta có: \(M'\left( x \right) = 0,0001 - \frac{{10\,000}}{{{x^2}}}\);

\(M'\left( x \right) = 0 \Leftrightarrow x = 10\,000\,\,\,\left( {{\rm{do}}\,\,x \ge 1} \right)\).

Bảng biến thiên của hàm số như sau:

Căn cứ bảng biến thiên, ta có: \(\mathop {\min }\limits_{\left[ {1;\, + \infty } \right)} M\left( x \right) = 2,2\) tại \(x = 10\,000\).

Vậy doanh nghiệp cần sản xuất \(10\,000\) sản phẩm để chi phí trung bình là nhỏ nhất.

Đáp số: \(10\,000\).

Lời giải

Đáp án đúng là: A

Dựa vào đồ thị hàm số, ta thấy tiệm cận xiên của đồ thị hàm số đã cho là đường thẳng đi qua hai điểm \(\left( {1;0} \right)\)\(\left( {0; - 1} \right)\), chính là đường thẳng \(y = x - 1\).

Do đó, đường thẳng \(y = x - 1\) là tiệm cận xiên của đồ thị hàm số đã cho.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP