Câu hỏi:

10/10/2024 667

Hàm số \(y = f\left( x \right) = 2{x^3} - 9{x^2} - 24x + 1\) nghịch biến trên khoảng:

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn sử Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B

Tập xác định của hàm số là \(\mathbb{R}\).

Ta có \(f'\left( x \right) = 6{x^2} - 18x - 24\); \(f'\left( x \right) = 0 \Leftrightarrow x =  - 1\) hoặc \(x = 4\).

Bảng biến thiên của hàm số như sau:

Căn cứ vào bảng biến thiên, ta thấy hàm số đã cho nghịch biến trên khoảng \(\left( { - 1;\,4} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số \(y = \frac{{{x^2} - 2x - 3}}{{x - 2}}\).

a) Hàm số đã cho đồng biến trên mỗi khoảng \(\left( { - \infty ;2} \right)\)\(\left( {2; + \infty } \right)\).

b) Hàm số đã cho có 2 cực trị.

c) Đồ thị hàm số nhận điểm \(I\left( {2;2} \right)\) là tâm đối xứng.

d) Có 5 điểm thuộc đồ thị hàm số có tọa độ nguyên.

Xem đáp án » 10/10/2024 11,783

Câu 2:

Cho hàm số \(y = \frac{{x + m}}{{x + 1}}\) với \(m > 1\). Với giá trị nào của tham số \(m\) thì hàm số đã cho có giá trị lớn nhất trên đoạn \(\left[ {1;\,4} \right]\) bằng \(3\)?

Xem đáp án » 10/10/2024 11,009

Câu 3:

Cho hình chóp tứ giác đều \(S.ABCD\) có độ dài tất cả các cạnh đều bằng \(a\). Đáy \(ABCD\) có tâm là \(O\). Khi đó:

a) \(\overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC}  + \overrightarrow {OD}  = 4\overrightarrow {SO} \).

b) \(\overrightarrow {SA}  + \overrightarrow {SC}  = \overrightarrow {SB}  + \overrightarrow {SD} \).

c) \(\left( {\overrightarrow {SA} ,\,\overrightarrow {AC} } \right) = 45^\circ \).

d) \(\overrightarrow {SA}  \cdot \overrightarrow {AC}  =  - {a^2}\).

Xem đáp án » 10/10/2024 10,741

Câu 4:

Giá trị nhỏ nhất của hàm số \(y = \sqrt {7 - 6x} \) trên đoạn \(\left[ { - 1;\,1} \right]\) bằng

Xem đáp án » 10/10/2024 5,412

Câu 5:

Đồ thị hàm số nào dưới đây có dạng như đường cong trong hình dưới?

Xem đáp án » 10/10/2024 4,511

Câu 6:

PHẦN III. Câu trắc nghiệm trả lời ngắn. Thí sinh trả lời từ câu 1 đến câu 6.

Cho hàm số \(y = f\left( x \right)\) có đạo hàm trên \(\mathbb{R}\) và đồ thị hàm số \(y = f'\left( x \right)\) như hình vẽ dưới đây.

Xét hàm số \(g\left( x \right) = f\left( x \right) - x\). Hàm số \(g\left( x \right)\) có bao nhiêu điểm cực trị?

Xem đáp án » 10/10/2024 3,511

Câu 7:

Quan sát bảng biến thiên dưới đây và cho biết bảng biến thiên đó là của hàm số nào?

Xem đáp án » 10/10/2024 3,510

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store