Câu hỏi:
10/10/2024 5,885Câu hỏi trong đề: Đề thi giữa kì 1 Toán 12 Cánh Diều có đáp án !!
Quảng cáo
Trả lời:
Đáp án đúng là: C
Ta có: \(y' = \frac{{ - 3x}}{{\sqrt {7 - 6x} }}\). Khi đó, trên khoảng \(\left( { - 1;\,1} \right)\), \(y' = 0\) khi \(x = 0\).
\(y\left( { - 1} \right) = \sqrt {13} ;\,\,y\left( 0 \right) = \sqrt 7 ;\,\,y\left( 1 \right) = 1\).
Từ đó suy ra \(\mathop {\min }\limits_{\left[ { - 1;\,1} \right]} y = y\left( 1 \right) = 1\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Đ, b) S, c) Đ, d) S.
Hướng dẫn giải
Xét hàm số \(y = \frac{{{x^2} - 2x - 3}}{{x - 2}} = x - \frac{3}{{x - 2}}\).
– Tập xác định của hàm số là \(\mathbb{R}\backslash \left\{ 2 \right\}\).
– Ta có \(y' = 1 + \frac{3}{{{{\left( {x - 2} \right)}^2}}}\); \(y' > 0\) với mọi \(x \ne 2\).
– Hàm số đồng biến trên từng khoảng \(\left( { - \infty ;2} \right)\) và \(\left( {2; + \infty } \right)\). Do đó, ý a) đúng.
– Hàm số không có cực trị. Do đó, ý b) sai.
– Tiệm cận: \(\mathop {\lim }\limits_{x \to {2^ - }} y = \mathop {\lim }\limits_{x \to {2^ - }} \left( {x - \frac{3}{{x - 2}}} \right) = + \infty ;\,\,\mathop {\lim }\limits_{x \to {2^ + }} y = \mathop {\lim }\limits_{x \to {2^ + }} \left( {x - \frac{3}{{x - 2}}} \right) = - \infty \);
\(\mathop {\lim }\limits_{x \to - \infty } \left( {y - x} \right) = \mathop {\lim }\limits_{x \to - \infty } \left( { - \frac{3}{{x - 2}}} \right) = 0;\,\,\mathop {\lim }\limits_{x \to + \infty } \left( {y - x} \right) = \mathop {\lim }\limits_{x \to + \infty } \left( { - \frac{3}{{x - 2}}} \right) = 0\).
Do đó, đồ thị hàm số có tiệm cận đứng là đường thẳng \(x = 2\) và tiệm cận xiên là đường thẳng \(y = x\). Vậy tâm đối xứng của đồ thị hàm số là giao điểm \(I\left( {2;\,2} \right)\) của hai đường tiệm cận nên ý c) đúng.
– Với \(x \in \mathbb{Z}\backslash \left\{ 2 \right\}\) thì \(y \in \mathbb{Z}\) khi và chỉ khi \(\frac{3}{{x - 2}} \in \mathbb{Z}\), tức là \(x - 2 \in U\left( 3 \right) = \left\{ { \pm 1;\, \pm 3} \right\}\).
Ta có:
\(x - 2\) |
\( - 3\) |
\( - 1\) |
\(1\) |
\(3\) |
\(x\) |
\( - 1\) |
\(1\) |
\(3\) |
\(5\) |
\(y = x - \frac{3}{{x - 2}}\) |
\(0\) |
\(4\) |
\(0\) |
\(4\) |
Vậy có 4 điểm thuộc đồ thị hàm số có tọa độ nguyên nên ý d) sai.
Lời giải
a) S, b) Đ, c) S, d) Đ.
Hướng dẫn giải
Vì \(S.ABCD\) là hình chóp tứ giác đều nên đáy \(ABCD\) là hình vuông.
Suy ra tâm \(O\) là trung điểm của các đường chéo \(AC\) và \(BD\).
Do đó, \(\overrightarrow {OA} + \overrightarrow {OC} = \overrightarrow 0 \) và \(\overrightarrow {OB} + \overrightarrow {OD} = \overrightarrow 0 \).
Vậy \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} = \overrightarrow 0 \) nên ý a) sai.
Với điểm \(S\), ta có: \(\left\{ \begin{array}{l}\overrightarrow {SA} + \overrightarrow {SC} = 2\overrightarrow {SO} \\\overrightarrow {SB} + \overrightarrow {SD} = 2\overrightarrow {SO} \end{array} \right.\). Suy ra \(\overrightarrow {SA} + \overrightarrow {SC} = \overrightarrow {SB} + \overrightarrow {SD} \) nên ý b) đúng.
Tứ giác \(ABCD\) là hình vuông có độ dài mỗi cạnh là \(a\) nên độ dài đường chéo \(AC\) là \(a\sqrt 2 \). Tam giác \(SAC\) có \(SA = SC = a\) và \(AC = a\sqrt 2 \) nên tam giác \(SAC\) vuông cân tại \(S\), suy ra \(\widehat {SAC} = 45^\circ \). Do đó, \(\left( {\overrightarrow {SC} ,\,\overrightarrow {AC} } \right) = 180^\circ - \widehat {SAC} = 180^\circ - 45^\circ = 135^\circ \).
Suy ra \(\overrightarrow {SA} \cdot \overrightarrow {AC} = \left| {\overrightarrow {SA} } \right| \cdot \left| {\overrightarrow {AC} } \right| \cdot \cos 135^\circ = a \cdot a\sqrt 2 \cdot \left( { - \frac{{\sqrt 2 }}{2}} \right) = - {a^2}\).
Vậy ý c) sai và ý d) đúng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
56 câu Chuyên đề Toán 12 Bài 2: Lôgarit có đáp án
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)
148 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu từ đề thi Đại học có lời giải (P1)
80 câu Bài tập Hình học Khối đa diện có lời giải chi tiết (P1)