Câu hỏi:

10/10/2024 1,113

Độ lớn của các lực căng trên mỗi sợi dây cáp trong hình dưới đây bằng bao nhiêu Newton? Biết rằng khối lượng xe là 1 500 kg, gia tốc là 9,8 m/s2, khung nâng có khối lượng 300 kg và có dạng hình chóp \(S.ABCD\) với đáy \(ABCD\) là hình chữ nhật tâm \(O\), \(AB = 8\) m, \(BC = 12\) m, \(SC = 12\) m và \(SO\) vuông góc với \(\left( {ABCD} \right)\). Làm tròn kết quả đến hàng đơn vị của Newton.

Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025).

Tải ngay

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có \(AC = BD = \sqrt {{8^2} + {{12}^2}}  = 4\sqrt {13} \), \(SO = \sqrt {S{C^2} - O{C^2}}  = \sqrt {{{12}^2} - {{\left( {2\sqrt {13} } \right)}^2}}  = 2\sqrt {23} \),

\(\sin \widehat {SCO} = \frac{{SO}}{{SC}} = \frac{{2\sqrt {23} }}{{12}} = \frac{{\sqrt {23} }}{6}\).

Gọi \(P\) là độ lớn của trọng lực xe và khung sắt nâng.

Ta có \(P = \left( {1\,500 + 300} \right) \cdot 9,8 = 17\,640\) (N).

Gọi \(F\) là độ lớn của lực căng trên mỗi sợi cáp.

Ta chứng minh được \(F\sin \widehat {SCO} = \frac{P}{4}\), suy ra \(F = \frac{P}{{4\sin \widehat {SCO}}} = \frac{{17\,640}}{{4 \cdot \frac{{\sqrt {23} }}{6}}} \approx 5\,517\) (N).

Đáp số: \(5\,517\).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số \(y = \frac{{{x^2} - 2x - 3}}{{x - 2}}\).

a) Hàm số đã cho đồng biến trên mỗi khoảng \(\left( { - \infty ;2} \right)\)\(\left( {2; + \infty } \right)\).

b) Hàm số đã cho có 2 cực trị.

c) Đồ thị hàm số nhận điểm \(I\left( {2;2} \right)\) là tâm đối xứng.

d) Có 5 điểm thuộc đồ thị hàm số có tọa độ nguyên.

Xem đáp án » 10/10/2024 18,088

Câu 2:

Cho hình chóp tứ giác đều \(S.ABCD\) có độ dài tất cả các cạnh đều bằng \(a\). Đáy \(ABCD\) có tâm là \(O\). Khi đó:

a) \(\overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC}  + \overrightarrow {OD}  = 4\overrightarrow {SO} \).

b) \(\overrightarrow {SA}  + \overrightarrow {SC}  = \overrightarrow {SB}  + \overrightarrow {SD} \).

c) \(\left( {\overrightarrow {SA} ,\,\overrightarrow {AC} } \right) = 45^\circ \).

d) \(\overrightarrow {SA}  \cdot \overrightarrow {AC}  =  - {a^2}\).

Xem đáp án » 10/10/2024 14,942

Câu 3:

Cho hàm số \(y = \frac{{x + m}}{{x + 1}}\) với \(m > 1\). Với giá trị nào của tham số \(m\) thì hàm số đã cho có giá trị lớn nhất trên đoạn \(\left[ {1;\,4} \right]\) bằng \(3\)?

Xem đáp án » 10/10/2024 11,596

Câu 4:

Đồ thị hàm số nào dưới đây có dạng như đường cong trong hình dưới?

Xem đáp án » 10/10/2024 6,553

Câu 5:

PHẦN III. Câu trắc nghiệm trả lời ngắn. Thí sinh trả lời từ câu 1 đến câu 6.

Cho hàm số \(y = f\left( x \right)\) có đạo hàm trên \(\mathbb{R}\) và đồ thị hàm số \(y = f'\left( x \right)\) như hình vẽ dưới đây.

Xét hàm số \(g\left( x \right) = f\left( x \right) - x\). Hàm số \(g\left( x \right)\) có bao nhiêu điểm cực trị?

Xem đáp án » 10/10/2024 5,822

Câu 6:

Giá trị nhỏ nhất của hàm số \(y = \sqrt {7 - 6x} \) trên đoạn \(\left[ { - 1;\,1} \right]\) bằng

Xem đáp án » 10/10/2024 5,694

Câu 7:

PHẦN II. Câu trắc nghiệm đúng sai. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.

Cho hàm số \(y = f\left( x \right)\) xác định trên \(\mathbb{R}\backslash \left\{ { - 2} \right\}\) và có bảng biến thiên như sau:

a) Hàm số \(y = f\left( x \right)\) đồng biến trên mỗi khoảng \[\left( { - \infty ; - 4} \right)\]\(\left( {0;\, + \infty } \right)\).

b) Giá trị cực tiểu của hàm số đã cho là \({y_{CT}} =  - 6\).

c) Hàm số \(y = f\left( x \right)\) có giá trị lớn nhất bằng \(2\) và giá trị nhỏ nhất bằng \( - 6\).

d) Công thức xác định hàm số là \(y = \frac{{{x^2} + 2x + 4}}{{x + 2}}\).

Xem đáp án » 10/10/2024 5,416
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua