Câu hỏi:
10/10/2024 7,125
Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình dưới đây.

Đường tiệm cận xiên của đồ thị hàm số đã cho là đường thẳng
Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình dưới đây.
Đường tiệm cận xiên của đồ thị hàm số đã cho là đường thẳng
Câu hỏi trong đề: Đề thi giữa kì 1 Toán 12 Cánh Diều có đáp án !!
Quảng cáo
Trả lời:
Đáp án đúng là: B
Từ đồ thị đã cho, ta thấy đường tiệm cận xiên của đồ thị hàm số là đường thẳng đi qua hai điểm \(\left( { - 1;0} \right)\) và \(\left( {0; - 1} \right)\). Do đó, tiệm cận xiên của đồ thị hàm số đã cho là đường thẳng \(y = - x - 1\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: B
Do đồ thị có tiệm cận đứng là \(x = 2\) nên \(d < 0.\)
Giao điểm của đồ thị và trục tung có tung độ \(\frac{c}{d} < 0 \Rightarrow c > 0.\)
Hệ số góc của tiệm cận xiên là \(a.\) Mặt khác, từ hình vẽ hệ số góc của tiệm cận xiên là dương nên \(a > 0.\)
Lại có \(y' = \frac{{a{x^2} + 2adx + bd - c}}{{{{\left( {x + d} \right)}^2}}}\) và hai điểm cực trị của hàm số có giá trị dương.
Suy ra \({x_1}{x_2} = \frac{{bd - c}}{a} > 0 \Rightarrow bd - c > 0 \Rightarrow bd > c \Rightarrow b < 0\).
Vậy có 2 số có giá trị dương trong các số \(a,b,c,d\).
Lời giải
Theo đề bài, ta có hình vẽ sau:
Hợp lực tác động vào ba vật là \(\overrightarrow F = \overrightarrow {{F_1}} + \overrightarrow {{F_2}} + \overrightarrow {{F_3}} = \overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} = \overrightarrow {OD} + \overrightarrow {OC} = \overrightarrow {OE} \).
Ta có \(\widehat {AOB} = \left( {\overrightarrow {OA} ,\,\overrightarrow {OB} } \right) = \left( {\overrightarrow {{F_1}} ,\,\overrightarrow {{F_2}} } \right) = 110^\circ \). Suy ra \(\widehat {OAD} = 70^\circ \).
Áp dụng định lý côsin trong tam giác \(OAD\), ta có:
\(O{D^2} = O{A^2} + A{D^2} - 2OA \cdot AD \cdot \cos \widehat {OAD} = {9^2} + {4^2} - 2 \cdot 9 \cdot 4 \cdot \cos 70^\circ = 97 - 72\cos 70^\circ \).
Vì \(OC \bot \left( {OBDA} \right)\) nên \(OC \bot OD\). Suy ra \(ODEC\) là hình chữ nhật.
Do đó, tam giác \(OCE\) vuông tại \(C\) nên
\(O{E^2} = O{C^2} + E{C^2} = {7^2} + 97 - 72\cos 70^\circ = 146 - 72\cos 70^\circ \).
Suy ra \(OE = \sqrt {146 - 72\cos 70^\circ } \approx 11\).
Vậy độ lớn của hợp lực của ba lực đã cho bằng khoảng 11 N.
Đáp số: \(11\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.