Câu hỏi:
10/10/2024 26,491
Có ba lực cùng tác động vào một cái bàn như hình vẽ dưới. Trong đó hai lực \(\overrightarrow {{F_1}} ,\,\overrightarrow {{F_2}} \) tạo với nhau một góc \(110^\circ \) và có độ lớn lần lượt là 9 N và 4 N, lực \(\overrightarrow {{F_3}} \) vuông góc với mặt phẳng tạo bởi hai lực \(\overrightarrow {{F_1}} ,\,\overrightarrow {{F_2}} \) và có độ lớn 7 N. Độ lớn hợp lực của ba lực trên là bao nhiêu Newton (làm tròn kết quả đến hàng đơn vị của Newton)?

Có ba lực cùng tác động vào một cái bàn như hình vẽ dưới. Trong đó hai lực \(\overrightarrow {{F_1}} ,\,\overrightarrow {{F_2}} \) tạo với nhau một góc \(110^\circ \) và có độ lớn lần lượt là 9 N và 4 N, lực \(\overrightarrow {{F_3}} \) vuông góc với mặt phẳng tạo bởi hai lực \(\overrightarrow {{F_1}} ,\,\overrightarrow {{F_2}} \) và có độ lớn 7 N. Độ lớn hợp lực của ba lực trên là bao nhiêu Newton (làm tròn kết quả đến hàng đơn vị của Newton)?
Câu hỏi trong đề: Đề thi giữa kì 1 Toán 12 Cánh Diều có đáp án !!
Quảng cáo
Trả lời:
Theo đề bài, ta có hình vẽ sau:
Hợp lực tác động vào ba vật là \(\overrightarrow F = \overrightarrow {{F_1}} + \overrightarrow {{F_2}} + \overrightarrow {{F_3}} = \overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} = \overrightarrow {OD} + \overrightarrow {OC} = \overrightarrow {OE} \).
Ta có \(\widehat {AOB} = \left( {\overrightarrow {OA} ,\,\overrightarrow {OB} } \right) = \left( {\overrightarrow {{F_1}} ,\,\overrightarrow {{F_2}} } \right) = 110^\circ \). Suy ra \(\widehat {OAD} = 70^\circ \).
Áp dụng định lý côsin trong tam giác \(OAD\), ta có:
\(O{D^2} = O{A^2} + A{D^2} - 2OA \cdot AD \cdot \cos \widehat {OAD} = {9^2} + {4^2} - 2 \cdot 9 \cdot 4 \cdot \cos 70^\circ = 97 - 72\cos 70^\circ \).
Vì \(OC \bot \left( {OBDA} \right)\) nên \(OC \bot OD\). Suy ra \(ODEC\) là hình chữ nhật.
Do đó, tam giác \(OCE\) vuông tại \(C\) nên
\(O{E^2} = O{C^2} + E{C^2} = {7^2} + 97 - 72\cos 70^\circ = 146 - 72\cos 70^\circ \).
Suy ra \(OE = \sqrt {146 - 72\cos 70^\circ } \approx 11\).
Vậy độ lớn của hợp lực của ba lực đã cho bằng khoảng 11 N.
Đáp số: \(11\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: B
Do đồ thị có tiệm cận đứng là \(x = 2\) nên \(d < 0.\)
Giao điểm của đồ thị và trục tung có tung độ \(\frac{c}{d} < 0 \Rightarrow c > 0.\)
Hệ số góc của tiệm cận xiên là \(a.\) Mặt khác, từ hình vẽ hệ số góc của tiệm cận xiên là dương nên \(a > 0.\)
Lại có \(y' = \frac{{a{x^2} + 2adx + bd - c}}{{{{\left( {x + d} \right)}^2}}}\) và hai điểm cực trị của hàm số có giá trị dương.
Suy ra \({x_1}{x_2} = \frac{{bd - c}}{a} > 0 \Rightarrow bd - c > 0 \Rightarrow bd > c \Rightarrow b < 0\).
Vậy có 2 số có giá trị dương trong các số \(a,b,c,d\).
Lời giải
a) Đ, b) S, c) S, d) Đ.
Hướng dẫn giải
– Theo quy tắc ba điểm, ta có:
\(\overrightarrow {AB} + \overrightarrow {CD} = \overrightarrow {AD} + \overrightarrow {DB} + \overrightarrow {CD} \)\( = \overrightarrow {AD} + \left( {\overrightarrow {CD} + \overrightarrow {DB} } \right) = \overrightarrow {AD} + \overrightarrow {CB} \).
Vậy ý a) đúng.
– Do \(AB,\,AC,\,AD\) đôi một vuông góc nên ta có:
\(\overrightarrow {AB} \cdot \overrightarrow {AD} = \overrightarrow {AC} \cdot \overrightarrow {AD} = \overrightarrow {AC} \cdot \overrightarrow {AB} = 0\).
Vậy ý) b sai.
– Vì \(AB = 1\) nên \({\overrightarrow {AB} ^2} = 1\).
Vì \(M\) là trung điểm của \(BC\) nên ta có:
\(\overrightarrow {AM} \cdot \overrightarrow {BD} = \frac{1}{2}\left( {\overrightarrow {AB} + \overrightarrow {AC} } \right) \cdot \left( {\overrightarrow {AD} - \overrightarrow {AB} } \right)\)
\( = \frac{1}{2}\left( {\overrightarrow {AB} \cdot \overrightarrow {AD} - {{\overrightarrow {AB} }^2} + \overrightarrow {AC} \cdot \overrightarrow {AD} - \overrightarrow {AC} \cdot \overrightarrow {AB} } \right)\)
\( = \frac{1}{2}\left( {0 - 1 + 0 - 0} \right) = - \frac{1}{2}\).
Vậy ý c) sai.
– Ta tính được \(AM = \frac{{\sqrt 2 }}{2},\,\,BD = \sqrt 2 \), suy ra
\(\cos \left( {\overrightarrow {AM} ,\,\overrightarrow {BD} } \right) = \frac{{\overrightarrow {AM} \cdot \overrightarrow {BD} }}{{\left| {\overrightarrow {AM} } \right| \cdot \left| {\overrightarrow {BD} } \right|}} = \frac{{ - \frac{1}{2}}}{{\frac{{\sqrt 2 }}{2} \cdot \sqrt 2 }} = - \frac{1}{2}\).
Vậy \(\left( {\overrightarrow {AM} ,\,\,\overrightarrow {BD} } \right) = 120^\circ \). Do đó, ý d) đúng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.