Câu hỏi:
10/10/2024 12,166Cho tứ diện \(ABCD\) có \(AB,\,AC,\,AD\) đôi một vuông góc và \(AB = AC = AD = 1\). Gọi \(M\) là trung điểm của \(BC\).
a) \(\overrightarrow {AB} + \overrightarrow {CD} = \overrightarrow {AD} + \overrightarrow {CB} \).
b) \(\overrightarrow {AB} \cdot \overrightarrow {AD} = \overrightarrow {AC} \cdot \overrightarrow {AD} = \overrightarrow {AC} \cdot \overrightarrow {AB} = 1\).
c) \(\overrightarrow {AM} \cdot \overrightarrow {BD} = \frac{1}{2}\).
d) \(\left( {\overrightarrow {AM} ,\,\,\overrightarrow {BD} } \right) = 120^\circ \).
Câu hỏi trong đề: Đề thi giữa kì 1 Toán 12 Cánh Diều có đáp án !!
Quảng cáo
Trả lời:
a) Đ, b) S, c) S, d) Đ.
Hướng dẫn giải
– Theo quy tắc ba điểm, ta có:
\(\overrightarrow {AB} + \overrightarrow {CD} = \overrightarrow {AD} + \overrightarrow {DB} + \overrightarrow {CD} \)\( = \overrightarrow {AD} + \left( {\overrightarrow {CD} + \overrightarrow {DB} } \right) = \overrightarrow {AD} + \overrightarrow {CB} \).
Vậy ý a) đúng.
– Do \(AB,\,AC,\,AD\) đôi một vuông góc nên ta có:
\(\overrightarrow {AB} \cdot \overrightarrow {AD} = \overrightarrow {AC} \cdot \overrightarrow {AD} = \overrightarrow {AC} \cdot \overrightarrow {AB} = 0\).
Vậy ý) b sai.
– Vì \(AB = 1\) nên \({\overrightarrow {AB} ^2} = 1\).
Vì \(M\) là trung điểm của \(BC\) nên ta có:
\(\overrightarrow {AM} \cdot \overrightarrow {BD} = \frac{1}{2}\left( {\overrightarrow {AB} + \overrightarrow {AC} } \right) \cdot \left( {\overrightarrow {AD} - \overrightarrow {AB} } \right)\)
\( = \frac{1}{2}\left( {\overrightarrow {AB} \cdot \overrightarrow {AD} - {{\overrightarrow {AB} }^2} + \overrightarrow {AC} \cdot \overrightarrow {AD} - \overrightarrow {AC} \cdot \overrightarrow {AB} } \right)\)
\( = \frac{1}{2}\left( {0 - 1 + 0 - 0} \right) = - \frac{1}{2}\).
Vậy ý c) sai.
– Ta tính được \(AM = \frac{{\sqrt 2 }}{2},\,\,BD = \sqrt 2 \), suy ra
\(\cos \left( {\overrightarrow {AM} ,\,\overrightarrow {BD} } \right) = \frac{{\overrightarrow {AM} \cdot \overrightarrow {BD} }}{{\left| {\overrightarrow {AM} } \right| \cdot \left| {\overrightarrow {BD} } \right|}} = \frac{{ - \frac{1}{2}}}{{\frac{{\sqrt 2 }}{2} \cdot \sqrt 2 }} = - \frac{1}{2}\).
Vậy \(\left( {\overrightarrow {AM} ,\,\,\overrightarrow {BD} } \right) = 120^\circ \). Do đó, ý d) đúng.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: B
Do đồ thị có tiệm cận đứng là \(x = 2\) nên \(d < 0.\)
Giao điểm của đồ thị và trục tung có tung độ \(\frac{c}{d} < 0 \Rightarrow c > 0.\)
Hệ số góc của tiệm cận xiên là \(a.\) Mặt khác, từ hình vẽ hệ số góc của tiệm cận xiên là dương nên \(a > 0.\)
Lại có \(y' = \frac{{a{x^2} + 2adx + bd - c}}{{{{\left( {x + d} \right)}^2}}}\) và hai điểm cực trị của hàm số có giá trị dương.
Suy ra \({x_1}{x_2} = \frac{{bd - c}}{a} > 0 \Rightarrow bd - c > 0 \Rightarrow bd > c \Rightarrow b < 0\).
Vậy có 2 số có giá trị dương trong các số \(a,b,c,d\).
Lời giải
Theo đề bài, ta có hình vẽ sau:
Hợp lực tác động vào ba vật là \(\overrightarrow F = \overrightarrow {{F_1}} + \overrightarrow {{F_2}} + \overrightarrow {{F_3}} = \overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} = \overrightarrow {OD} + \overrightarrow {OC} = \overrightarrow {OE} \).
Ta có \(\widehat {AOB} = \left( {\overrightarrow {OA} ,\,\overrightarrow {OB} } \right) = \left( {\overrightarrow {{F_1}} ,\,\overrightarrow {{F_2}} } \right) = 110^\circ \). Suy ra \(\widehat {OAD} = 70^\circ \).
Áp dụng định lý côsin trong tam giác \(OAD\), ta có:
\(O{D^2} = O{A^2} + A{D^2} - 2OA \cdot AD \cdot \cos \widehat {OAD} = {9^2} + {4^2} - 2 \cdot 9 \cdot 4 \cdot \cos 70^\circ = 97 - 72\cos 70^\circ \).
Vì \(OC \bot \left( {OBDA} \right)\) nên \(OC \bot OD\). Suy ra \(ODEC\) là hình chữ nhật.
Do đó, tam giác \(OCE\) vuông tại \(C\) nên
\(O{E^2} = O{C^2} + E{C^2} = {7^2} + 97 - 72\cos 70^\circ = 146 - 72\cos 70^\circ \).
Suy ra \(OE = \sqrt {146 - 72\cos 70^\circ } \approx 11\).
Vậy độ lớn của hợp lực của ba lực đã cho bằng khoảng 11 N.
Đáp số: \(11\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
56 câu Chuyên đề Toán 12 Bài 2: Lôgarit có đáp án
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
7 câu Trắc nghiệm Khối đa diện lồi và khối đa diện đều có đáp án (Vận dụng)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận