Cho hàm số \[y = f\left( x \right)\] liên tục trên đoạn \(\left[ { - 1;3} \right]\) và có đồ thị hàm số như hình vẽ dưới đây.
Giá trị lớn nhất của hàm số đã cho trên đoạn \(\left[ {0;\,2} \right]\) bằng bao nhiêu?
Cho hàm số \[y = f\left( x \right)\] liên tục trên đoạn \(\left[ { - 1;3} \right]\) và có đồ thị hàm số như hình vẽ dưới đây.
Giá trị lớn nhất của hàm số đã cho trên đoạn \(\left[ {0;\,2} \right]\) bằng bao nhiêu?
Câu hỏi trong đề: Bộ 10 đề thi giữa kì 1 Toán 12 Cánh diều có đáp án !!
Quảng cáo
Trả lời:
Đáp án đúng là: B
Xét đồ thị hàm số \[y = f\left( x \right)\] trên đoạn \(\left[ {0;\,2} \right]\) như hình vẽ: Hàm số đã cho đạt giá trị lớn nhất tại \(x = 0\); \(\mathop {\max }\limits_{\left[ {0;\,2} \right]} f\left( x \right) = f\left( 0 \right) = 2\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đặt \(\overrightarrow F = \left( {x;y;z} \right)\), ta có:
\(x = 200 \cdot \cos 60^\circ \cdot \cos 45^\circ = 50\sqrt 2 \);
\(y = - 200 \cdot \cos 60^\circ \cdot \cos 45^\circ = - 50\sqrt 2 \);
\(z = 200 \cdot \sin 60^\circ = 100\sqrt 3 \).
Do đó, \(\overrightarrow F = \left( {50\sqrt 2 ; - 50\sqrt 2 ;100\sqrt 3 } \right)\).
Suy ra \(a = 50,b = 50,c = 100\). Vậy \(K = a - 2b + c = 50 - 2 \cdot 50 + 100 = 50\).
Đáp số: \(50\).
Câu 2
Lời giải
Đáp án đúng là: A
Dựa vào đồ thị hàm số đã cho ta có:
+ Đồ thị hàm số có tiệm cận đứng là đường thẳng \(x = - 1\) nên ta loại phương án C.
+ Đồ thị hàm số có tiệm cận xiên là đường thẳng đi xuống từ trái qua phải nên \(a,\,m\) trái dấu. Vậy phương án đúng là A.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

