Câu hỏi:

10/10/2024 1,168

PHẦN II. Câu trắc nghiệm đúng sai. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.

Cho hàm số \(y = f\left( x \right)\) xác định trên \(\mathbb{R}\)có bảng biến thiên như sau:

a) Hàm số đã cho nghịch biến trên các khoảng \(\left( { - \infty ; - 1} \right)\)\(\left( {0;1} \right)\).

b) Hàm số đã cho có \(3\) điểm cực trị.

c) Trên đoạn \(\left[ { - 1;\,1} \right]\), giá trị lớn nhất của hàm số đã cho bằng \(3\).

d) Phương trình \(f\left( x \right) + 3 = 0\) có 4 nghiệm.

Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025).

Tải ngay

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Đ, b) Đ, c) Đ, d) S.

Hướng dẫn giải

Quan sát bảng biến thiên, ta thấy:

– Hàm số đã cho đồng biến trên các khoảng \(\left( { - 1;\,0} \right)\)\(\left( {1; + \infty } \right)\); nghịch biến trên các khoảng \(\left( { - \infty ; - 1} \right)\)\(\left( {0;1} \right)\). Vậy ý a) đúng.

– Hàm số đã cho có \(3\) điểm cực trị: \(x =  - 1\) (điểm cực tiểu), \(x = 0\) (điểm cực đại) và \(x = 1\) (điểm cực tiểu). Do đó, ý b) đúng.

 Trên đoạn \(\left[ { - 1;\,1} \right]\), hàm số đạt giá trị lớn nhất tại \(x = 0\), \(\mathop {\max }\limits_{\left[ { - 1;\,1} \right]} f\left( x \right) = f\left( 0 \right) = 3\). Do đó, ý c) đúng.

– Ta có \(f\left( x \right) + 3 = 0\)\( \Leftrightarrow f\left( x \right) =  - 3\).

Đường thẳng \(y =  - 3\) và đồ thị hàm số \(y = f\left( x \right)\) không cắt nhau nên phương trình \(f\left( x \right) =  - 3\) không có nghiệm, tức là phương trình \(f\left( x \right) + 3 = 0\) vô nghiệm.

Vậy ý d) sai.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Người ta kéo vật nặng bằng một lực \(\overrightarrow F \) có cường độ \(200\) N như hình dưới đây.

Khi đó, ta biểu diễn được tọa độ của vectơ \(\overrightarrow F \) trong hệ tọa độ trên là \(\overrightarrow F  = \left( {a\sqrt 2 ; - b\sqrt 2 ;c\sqrt 3 } \right)\) (với \(a,b,c \in \mathbb{Z}\)). Giá trị của biểu thức \(K = a - 2b + c\) bằng bao nhiêu?

Xem đáp án » 10/10/2024 6,959

Câu 2:

PHẦN III. Câu trắc nghiệm trả lời ngắn. Thí sinh trả lời từ câu 1 đến câu 6.

Có bao nhiêu giá trị nguyên dương của tham số \(m\) để hàm số \(y = {x^3} - 3{x^2} + \left( {m + 1} \right)x + 2\) có hai điểm cực trị?

Xem đáp án » 10/10/2024 2,678

Câu 3:

Cho hàm số \(y = \frac{{x - 3}}{{x + 1}}\).

a) Hàm số đã cho đồng biến trên \[\mathbb{R}\backslash \left\{ { - 1} \right\}\].

b) Hàm số đã cho đạt cực đại tại \(x = 4\).

c) Đồ thị hàm số đã cho có tiệm cận đứng là đường thẳng \(x =  - 1\), tiệm cận ngang là đường thẳng \(y = 1\).

d) \(2\,023\) giá trị nguyên của tham số \(m\) thuộc đoạn \(\left[ { - 2\,024;2\,024} \right]\) để đường thẳng \(y = x + 2m\) cắt đồ thị hàm số đã cho tại hai điểm nằm về hai phía của trục tung.

Xem đáp án » 10/10/2024 2,225

Câu 4:

Người ta giới thiệu một loại thuốc để kích thích sự sinh sản của một loại vi khuẩn. Sau \(t\) phút, số vi khuẩn được xác định theo công thức: \(f\left( t \right) =  - {t^3} + 30{t^2} + 1\,000\) với \(0 \le t \le 30\). Hỏi sau bao nhiêu phút thì số vi khuẩn lớn nhất?

Xem đáp án » 10/10/2024 2,048

Câu 5:

Cho hàm số \(y = x\ln x\). Giá trị nhỏ nhất của hàm số đã cho trên đoạn \(\left[ {1;\,e} \right]\) bằng:

Xem đáp án » 10/10/2024 1,693

Câu 6:

Cho hàm số \(y = \frac{{{x^2} + 3}}{{x - 1}}\). Khẳng định nào sau đây là đúng?

Xem đáp án » 10/10/2024 1,433

Câu 7:

Đường cong trong hình dưới đây là đồ thị của hàm số nào trong các hàm số ở các phương án sau:

Xem đáp án » 10/10/2024 1,373
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua