Câu hỏi:

10/10/2024 270

Cho hình chóp \(S.ABC\)\(SA = SB = SC = AB = AC = 1\)\(BC = \sqrt 2 \).

a) \(\overrightarrow {SA}  + \overrightarrow {AB}  + \overrightarrow {BC}  = \overrightarrow {SC} \).

b) \(\left| {\overrightarrow {SA} } \right| = \left| {\overrightarrow {AB} } \right| = \left| {\overrightarrow {BC} } \right| = \sqrt 2 \).

c) \(\overrightarrow {SC}  \cdot \overrightarrow {AB}  = \frac{1}{2}\).

d) \(\cos \left( {\overrightarrow {SC} ,\,\overrightarrow {AB} } \right) = \frac{1}{2}\).

Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025).

Tải ngay

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Đ, b) S, c) S, d) S.

Hướng dẫn giải

– Theo quy tắc ba điểm, ta có: \(\overrightarrow {SA}  + \overrightarrow {AB}  + \overrightarrow {BC}  = \overrightarrow {SB}  + \overrightarrow {BC}  = \overrightarrow {SC} \). Do đó, ý a) đúng.

– Ta có \(\left| {\overrightarrow {SA} } \right| = SA = 1;\,\,\left| {\overrightarrow {AB} } \right| = AB = 1;\,\,\left| {\overrightarrow {BC} } \right| = BC = \sqrt 2 \). Do đó, ý b) sai.

– Từ giả thiết, ta thấy tam giác \(ABC\) vuông tại \(A\) và tam giác \(SAB\) đều.

Do đó, \(\overrightarrow {AB}  \cdot \overrightarrow {AC}  = 0\)\(\left( {\overrightarrow {SA} ,\,\overrightarrow {AB} } \right) = 180^\circ  - \widehat {SAB} = 120^\circ \).

Ta có: \[\overrightarrow {SC}  \cdot \overrightarrow {AB}  = \left( {\overrightarrow {SA}  + \overrightarrow {AC} } \right) \cdot \overrightarrow {AB}  = \overrightarrow {SA}  \cdot \overrightarrow {AB}  + \overrightarrow {AC}  \cdot \overrightarrow {AB} \]

\( = \overrightarrow {SA}  \cdot \overrightarrow {AB}  = \left| {\overrightarrow {SA} } \right| \cdot \left| {\overrightarrow {AB} } \right| \cdot \cos 120^\circ  =  - \frac{1}{2}\).

Do đó, ý c) sai.

– Ta có: \(\cos \left( {\overrightarrow {SC} ,\,\overrightarrow {AB} } \right) = \frac{{\overrightarrow {SC}  \cdot \,\overrightarrow {AB} }}{{\left| {\overrightarrow {SC} } \right| \cdot \,\left| {\overrightarrow {AB} } \right|}} = \frac{{ - \frac{1}{2}}}{{1 \cdot 1}} =  - \frac{1}{2}\). Vậy ý d) sai.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Người ta kéo vật nặng bằng một lực \(\overrightarrow F \) có cường độ \(200\) N như hình dưới đây.

Khi đó, ta biểu diễn được tọa độ của vectơ \(\overrightarrow F \) trong hệ tọa độ trên là \(\overrightarrow F  = \left( {a\sqrt 2 ; - b\sqrt 2 ;c\sqrt 3 } \right)\) (với \(a,b,c \in \mathbb{Z}\)). Giá trị của biểu thức \(K = a - 2b + c\) bằng bao nhiêu?

Xem đáp án » 10/10/2024 6,958

Câu 2:

PHẦN III. Câu trắc nghiệm trả lời ngắn. Thí sinh trả lời từ câu 1 đến câu 6.

Có bao nhiêu giá trị nguyên dương của tham số \(m\) để hàm số \(y = {x^3} - 3{x^2} + \left( {m + 1} \right)x + 2\) có hai điểm cực trị?

Xem đáp án » 10/10/2024 2,678

Câu 3:

Cho hàm số \(y = \frac{{x - 3}}{{x + 1}}\).

a) Hàm số đã cho đồng biến trên \[\mathbb{R}\backslash \left\{ { - 1} \right\}\].

b) Hàm số đã cho đạt cực đại tại \(x = 4\).

c) Đồ thị hàm số đã cho có tiệm cận đứng là đường thẳng \(x =  - 1\), tiệm cận ngang là đường thẳng \(y = 1\).

d) \(2\,023\) giá trị nguyên của tham số \(m\) thuộc đoạn \(\left[ { - 2\,024;2\,024} \right]\) để đường thẳng \(y = x + 2m\) cắt đồ thị hàm số đã cho tại hai điểm nằm về hai phía của trục tung.

Xem đáp án » 10/10/2024 2,225

Câu 4:

Người ta giới thiệu một loại thuốc để kích thích sự sinh sản của một loại vi khuẩn. Sau \(t\) phút, số vi khuẩn được xác định theo công thức: \(f\left( t \right) =  - {t^3} + 30{t^2} + 1\,000\) với \(0 \le t \le 30\). Hỏi sau bao nhiêu phút thì số vi khuẩn lớn nhất?

Xem đáp án » 10/10/2024 2,048

Câu 5:

Cho hàm số \(y = x\ln x\). Giá trị nhỏ nhất của hàm số đã cho trên đoạn \(\left[ {1;\,e} \right]\) bằng:

Xem đáp án » 10/10/2024 1,693

Câu 6:

Cho hàm số \(y = \frac{{{x^2} + 3}}{{x - 1}}\). Khẳng định nào sau đây là đúng?

Xem đáp án » 10/10/2024 1,433

Câu 7:

Đường cong trong hình dưới đây là đồ thị của hàm số nào trong các hàm số ở các phương án sau:

Xem đáp án » 10/10/2024 1,373
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua