Câu hỏi:
10/10/2024 638Một chiếc đèn chùm treo có khối lượng \(m = 3\) kg được thiết kế với đĩa đèn được giữ bởi bốn đoạn xích \(SA,\,SB,\,SC,\,SD\) sao cho \(S.ABCD\) là hình chóp tứ giác đều có \(\widehat {ASC} = 60^\circ \) như hình dưới.
Độ lớn của lực căng cho mỗi sợi xích bằng bao nhiêu Newton (làm tròn kết quả đến hàng phần mười)? Biết rằng gia tốc rơi tự do có độ lớn 9,8 m/s2.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Gọi \(O\) là tâm của đáy \(ABCD\).
Vì \(S.ABCD\) là hình chóp tứ giác đều nên \(SO \bot \left( {ABCD} \right)\), \(SA = SB = SC = SD\) và \(O\) là trung điểm của \(AC\) và \(BD\).
Ta có: \(\widehat {ASC} = 60^\circ \), suy ra \(\widehat {ASO} = 30^\circ \).
Hợp lực của bốn sợi xích là:
\(\overrightarrow F = \overrightarrow {SA} + \overrightarrow {SB} + \overrightarrow {SC} + \overrightarrow {SD} = \left( {\overrightarrow {SA} + \overrightarrow {SC} } \right) + \left( {\overrightarrow {SB} + \overrightarrow {SD} } \right)\)\( = 2\overrightarrow {SO} + 2\overrightarrow {SO} = 4\overrightarrow {SO} \).
Để đèn chùm đứng yên thì hợp lực của các sợi xích phải cân bằng với trọng lực \(\overrightarrow P \), điều đó có nghĩa là \(4\overrightarrow {SO} = \overrightarrow P \), suy ra \(4\left| {\overrightarrow {SO} } \right| = \left| {\overrightarrow P } \right|\), hay \(SO = \frac{P}{4}\).
Độ lớn của trọng lực tác động lên đèn chùm là: \(P = mg = 3 \cdot 9,8 = 29,4\) (N).
Do đó, \(SO = \frac{{29,4}}{4} = 7,35\).
Ta có: \(SA = \frac{{SO}}{{\cos \widehat {ASO}}} = \frac{{7,35}}{{\cos 30^\circ }} = \frac{{49\sqrt 3 }}{{10}} \approx 8,5\).
Vậy độ lớn của lực căng cho mỗi sợi xích bằng khoảng 8,5 N.
Đáp số: \(8,5\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Người ta kéo vật nặng bằng một lực \(\overrightarrow F \) có cường độ \(200\) N như hình dưới đây.
Khi đó, ta biểu diễn được tọa độ của vectơ \(\overrightarrow F \) trong hệ tọa độ trên là \(\overrightarrow F = \left( {a\sqrt 2 ; - b\sqrt 2 ;c\sqrt 3 } \right)\) (với \(a,b,c \in \mathbb{Z}\)). Giá trị của biểu thức \(K = a - 2b + c\) bằng bao nhiêu?
Câu 2:
PHẦN III. Câu trắc nghiệm trả lời ngắn. Thí sinh trả lời từ câu 1 đến câu 6.
Có bao nhiêu giá trị nguyên dương của tham số \(m\) để hàm số \(y = {x^3} - 3{x^2} + \left( {m + 1} \right)x + 2\) có hai điểm cực trị?
Câu 3:
Câu 4:
Câu 5:
Cho hàm số \(y = \frac{{x - 3}}{{x + 1}}\).
a) Hàm số đã cho đồng biến trên \[\mathbb{R}\backslash \left\{ { - 1} \right\}\].
b) Hàm số đã cho đạt cực đại tại \(x = 4\).
c) Đồ thị hàm số đã cho có tiệm cận đứng là đường thẳng \(x = - 1\), tiệm cận ngang là đường thẳng \(y = 1\).
d) Có \(2\,023\) giá trị nguyên của tham số \(m\) thuộc đoạn \(\left[ { - 2\,024;2\,024} \right]\) để đường thẳng \(y = x + 2m\) cắt đồ thị hàm số đã cho tại hai điểm nằm về hai phía của trục tung.
Câu 6:
Câu 7:
53 câu Bài tập về Tính đơn điệu của hàm số có lời giải (P1)
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
200 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát hàm số nâng cao (P1)
120 câu Bài tập Cực trị hàm số cơ bản, nâng cao có lời giải (P1)
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)
124 câu Trắc nghiệm Ôn tập Toán 12 Chương 3 Hình học có đáp án (Phần 1)
250 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát hàm số cơ bản (P1)
về câu hỏi!