Câu hỏi:

10/10/2024 1,515

 Cho hàm số \(y = \frac{{{x^2} + 3x + 3}}{{x + 2}}\).

a) Hàm số đã cho đồng biến trên \[\left( { - \infty ; - 1} \right)\]\(\left( {3; + \infty } \right)\).

b) Tổng giá trị cực đại và giá trị cực tiểu của hàm số đã cho bằng \( - 4\)

c) Đường tiệm cận xiên của đồ thị hàm số đã cho đi qua điểm \(A\left( {0;1} \right)\).

d) Phương trình tiếp tuyến của đồ thị hàm số đã cho vuông góc với đường thẳng \(x - 3y - 6 = 0\) đi qua điểm \(B\left( { - \frac{3}{2};\frac{3}{2}} \right)\).

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) S, b) S, c) Đ, d) Đ.

Hướng dẫn giải

Xét hàm số \(y = \frac{{{x^2} + 3x + 3}}{{x + 2}} = x + 1 + \frac{1}{{x + 2}}\).

– Tập xác định của hàm số là \(\mathbb{R}\backslash \left\{ { - 2} \right\}\).

– Ta có \(y' = \frac{{{x^2} + 4x + 3}}{{{{\left( {x + 2} \right)}^2}}}\); \(y' = 0\) khi \(x =  - 3\) hoặc \(x =  - 1\).

Bảng biến thiên của hàm số như sau:

– Hàm số đã cho đồng biến trên từng khoảng \(\left( { - \infty ; - 3} \right)\)\(\left( { - 1; + \infty } \right)\). Do đó, ý a) sai.

– Hàm số đã cho đạt cực đại tại \(x =  - 3\), ; đạt cực tiểu tại \(x =  - 1\), \({y_{CT}} = 1\).

Suy ra . Do đó, ý b) sai.

– Tiệm cận:

+) Tiệm cận đứng của đồ thị hàm số đã cho là đường thẳng \(x =  - 2\).

+) Tiệm cận xiên của đồ thị hàm số đã cho là đường thẳng \(y = x + 1\).

Với \(x = 0\) thì \(y = 0 + 1 = 1\), do đó đường tiệm cận xiên của đồ thị hàm số đã cho đi qua điểm \(A\left( {0;1} \right)\). Vậy ý c) đúng.

– Đường thẳng \(x - 3y - 6 = 0\)\( \Leftrightarrow y = \frac{1}{3}x - 2\) có hệ số góc \({k_1} = \frac{1}{3}\). Đường thẳng này vuông góc với tiếp tuyến của đồ thị hàm số đã cho nên tiếp tuyến này có hệ số góc \({k_2} = \frac{{ - 1}}{{{k_1}}} =  - 3\).

Khi đó, với \({x_0}\) là hoành độ của tiếp điểm thì \(y'\left( {{x_0}} \right) = \frac{{x_0^2 + 4{x_0} + 2}}{{{{\left( {{x_0} + 2} \right)}^2}}} =  - 3\).

Ta tìm được \({x_0} =  - \frac{5}{2}\) hoặc \({x_0} =  - \frac{3}{2}\).

+) Với \({x_0} =  - \frac{5}{2}\), ta có tiếp tuyến: \(y =  - 3x - 11\).

+) Với \({x_0} =  - \frac{3}{2}\), ta có tiếp tuyến: \(y =  - 3x - 3\), tiếp tuyến này đi qua điểm \(B\left( { - \frac{3}{2};\frac{3}{2}} \right)\).

Do đó, ý d) đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Một chất điểm \(A\) nằm trên mặt phẳng nằm ngang \(\left( \alpha  \right)\), chịu tác động bởi ba lực \(\overrightarrow {{F_1}} ,\,\overrightarrow {{F_2}} ,\,\overrightarrow {{F_3}} \). Các lực \(\overrightarrow {{F_1}} ,\,\overrightarrow {{F_2}} \) có giá nằm trong \(\left( \alpha  \right)\)\(\left( {\overrightarrow {{F_1}} ,\,\overrightarrow {{F_2}} } \right) = 135^\circ \), còn lực \(\overrightarrow {{F_3}} \) có giá vuông góc với \(\left( \alpha  \right)\) và hướng lên trên. Độ lớn hợp lực của các lực \(\overrightarrow {{F_1}} ,\,\overrightarrow {{F_2}} ,\,\overrightarrow {{F_3}} \) bằng bao nhiêu (làm tròn kết quả đến hàng phần mười), biết rằng độ lớn của ba lực đó lần lượt là 20 N, 15 N và 10 N.

Xem đáp án » 10/10/2024 12,252

Câu 2:

Tiệm cận xiên của đồ thị hàm số \(y = \frac{{{x^2} - 3x + 6}}{{x + 2}}\) là đường thẳng:

Xem đáp án » 10/10/2024 1,294

Câu 3:

Trong không gian với hệ tọa độ \[Oxyz\], cho điểm \(M\left( { - 2; - 5;7} \right)\). Tọa độ của vectơ \(\overrightarrow {OM} \) là:

Xem đáp án » 10/10/2024 952

Câu 4:

Một nhà sản xuất muốn thiết kế một chiếc hộp có dạng hình hộp chữ nhật không có nắp, có đáy là hình vuông và diện tích bề mặt bằng \(108\) cm2 như hình dưới đây.

Biết khi \(x = {x_0},\,h = {h_0}\) thì thể tích của hộp là lớn nhất. Khi đó \({x_0} + {h_0}\) bằng bao nhiêu?

Xem đáp án » 10/10/2024 817

Câu 5:

Trong 18 giây đầu tiên, một chất điểm chuyển động theo phương trình \(s\left( t \right) =  - {t^3} + 18{t^2} + t + 3\), trong đó \(t\) tính bằng giây và \(s\) tính bằng mét. Chất điểm chuyển động có vận tốc tức thời lớn nhất bằng bao nhiêu mét trên giây trong 18 giây đầu tiên đó?

Xem đáp án » 10/10/2024 726

Câu 6:

Cho hàm số \(y = {x^3} - 3\left( {m + 1} \right){x^2} + 3\left( {7m - 3} \right)x\). Gọi \(S\) là tập các giá trị nguyên của tham số \(m\) để hàm số không có cực trị. Tập hợp \(S\) có bao nhiêu phần tử?

Xem đáp án » 10/10/2024 679

Bình luận


Bình luận