Câu hỏi:

10/10/2024 1,710 Lưu

Một nhà sản xuất muốn thiết kế một chiếc hộp có dạng hình hộp chữ nhật không có nắp, có đáy là hình vuông và diện tích bề mặt bằng \(108\) cm2 như hình dưới đây.

Biết khi \(x = {x_0},\,h = {h_0}\) thì thể tích của hộp là lớn nhất. Khi đó \({x_0} + {h_0}\) bằng bao nhiêu?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hình hộp trên có độ dài cạnh đáy là \(x\) (cm, \(x > 0\)) và chiều cao là \(h\) (cm, \(h > 0\)).

Diện tích bề mặt của hình hộp là \(108\) cm2 nên \({x^2} + 4xh = 108\).

Suy ra \(h = \frac{{108 - {x^2}}}{{4x}}\) (cm).

Thể tích của hình hộp là: \(V = {x^2} \cdot h = {x^2} \cdot \frac{{108 - {x^2}}}{{4x}} = \frac{{108x - {x^3}}}{4}\) (cm3).

Xét hàm số \(V\left( x \right) = \frac{{108x - {x^3}}}{4}\) với \(x \in \left( {0; + \infty } \right)\).

Ta có: \(V'\left( x \right) = \frac{{ - 3{x^2} + 108}}{4}\). Trên khoảng \(\left( {0; + \infty } \right)\), \(V'\left( x \right) = 0 \Leftrightarrow x = 6\).

Bảng biến thiên của hàm số \(V\left( x \right)\) như sau:

Do đó, thể tích của hình hộp lớn nhất khi độ dài cạnh đáy là \(x = 6\) cm.

Khi đó, chiều cao của hình hộp là \(h = \frac{{108 - {6^2}}}{{4 \cdot 6}} = 3\) (cm).

Vậy \({x_0} = 6,{h_0} = 3\)\({x_0} + {h_0} = 9\).

Đáp số: \(9\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Vẽ \(\overrightarrow {OA}  = \overrightarrow {{F_1}} ,\,\,\overrightarrow {OB}  = \overrightarrow {{F_2}} ,\,\,\overrightarrow {OC}  = \overrightarrow {{F_3}} \).

Dựng hình bình hành \(OADB\) và hình bình hành \(ODEC\).

Hợp lực tác động vào vật là \(\overrightarrow F  = \overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC}  = \overrightarrow {OD}  + \overrightarrow {OC}  = \overrightarrow {OE} \).

Áp dụng định lí côsin trong tam giác \(OBD\), ta có:

\(O{D^2} = B{D^2} + O{B^2} - 2BD \cdot OB \cdot \cos \widehat {OBD} = O{A^2} + O{B^2} + 2OA \cdot OB \cdot \cos 135^\circ \)

\(OC \bot \left( {OADB} \right)\) nên \(OC \bot OD\), suy ra \(ODEC\) là hình chữ nhật.

Do đó, tam giác \(ODE\) vuông tại \(D\).

Ta có \(O{E^2} = O{C^2} + O{D^2} = O{C^2} + O{A^2} + O{B^2} + 2OA \cdot OB \cdot \cos 135^\circ \).

Suy ra \(O{E^2} = \sqrt {O{C^2} + O{A^2} + O{B^2} + 2OA \cdot OB \cdot \cos 135^\circ } \)

\( = \sqrt {{{10}^2} + {{20}^2} + {{15}^2} + 2 \cdot 20 \cdot 15 \cdot \cos 135^\circ }  \approx 17,3\).

Vậy độ lớn của hợp lực là \(F = OE \approx 17,3\) N.

Đáp số: \(17,3\).

Lời giải

a) S, b) S, c) Đ, d) Đ.

Hướng dẫn giải

Xét hàm số \(y = \frac{{{x^2} + 3x + 3}}{{x + 2}} = x + 1 + \frac{1}{{x + 2}}\).

– Tập xác định của hàm số là \(\mathbb{R}\backslash \left\{ { - 2} \right\}\).

– Ta có \(y' = \frac{{{x^2} + 4x + 3}}{{{{\left( {x + 2} \right)}^2}}}\); \(y' = 0\) khi \(x =  - 3\) hoặc \(x =  - 1\).

Bảng biến thiên của hàm số như sau:

– Hàm số đã cho đồng biến trên từng khoảng \(\left( { - \infty ; - 3} \right)\)\(\left( { - 1; + \infty } \right)\). Do đó, ý a) sai.

– Hàm số đã cho đạt cực đại tại \(x =  - 3\), ; đạt cực tiểu tại \(x =  - 1\), \({y_{CT}} = 1\).

Suy ra . Do đó, ý b) sai.

– Tiệm cận:

+) Tiệm cận đứng của đồ thị hàm số đã cho là đường thẳng \(x =  - 2\).

+) Tiệm cận xiên của đồ thị hàm số đã cho là đường thẳng \(y = x + 1\).

Với \(x = 0\) thì \(y = 0 + 1 = 1\), do đó đường tiệm cận xiên của đồ thị hàm số đã cho đi qua điểm \(A\left( {0;1} \right)\). Vậy ý c) đúng.

– Đường thẳng \(x - 3y - 6 = 0\)\( \Leftrightarrow y = \frac{1}{3}x - 2\) có hệ số góc \({k_1} = \frac{1}{3}\). Đường thẳng này vuông góc với tiếp tuyến của đồ thị hàm số đã cho nên tiếp tuyến này có hệ số góc \({k_2} = \frac{{ - 1}}{{{k_1}}} =  - 3\).

Khi đó, với \({x_0}\) là hoành độ của tiếp điểm thì \(y'\left( {{x_0}} \right) = \frac{{x_0^2 + 4{x_0} + 2}}{{{{\left( {{x_0} + 2} \right)}^2}}} =  - 3\).

Ta tìm được \({x_0} =  - \frac{5}{2}\) hoặc \({x_0} =  - \frac{3}{2}\).

+) Với \({x_0} =  - \frac{5}{2}\), ta có tiếp tuyến: \(y =  - 3x - 11\).

+) Với \({x_0} =  - \frac{3}{2}\), ta có tiếp tuyến: \(y =  - 3x - 3\), tiếp tuyến này đi qua điểm \(B\left( { - \frac{3}{2};\frac{3}{2}} \right)\).

Do đó, ý d) đúng.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP